
CC7A
C Compiler for the

PIC17 Devices

Version 1.0

User's Manual

B Knudsen Data
Trondheim - Norway

CC7A C Compiler B Knudsen Data

2

This manual and the CC7A compiler is protected by Norwegian copyright laws and thus by
corresponding copyright laws agreed internationally by mutual consent. The manual and the compiler
may not be copied, partially or as a whole without the written consent from the author. The PDF-edition
of the manual can be printed to paper for private or local use, but not for distribution. Modification of the
manual or the compiler is strongly prohibited. All rights reserved.

LICENSE AGREEMENT:
By using the CC7A compiler, you agree to be bound by this agreement.

Only one person may use a licensed edition of the CC7A compiler at the same time for each user license.
If more than one person want to use the compiler for each user license, then this have to be done by some
manual handshaking procedure (not electronic automated), for example by exchanging a printed copy of
the CC7A User's Manual as a permission key. A site license allows an unlimited number of users within
the same administration unit.

You may make backup copies of the software, and copy it to multiple computers. You may not distribute
copies of the compiler to others. B Knudsen Data assumes no responsibility for errors or defects in the
documentation or in the compiler. This also applies to problems caused by such errors.

Copyright © B Knudsen Data, Trondheim, Norway, 2003 - 2009

This manual covers CC7A version 1.0 and related topics. New versions may contain changes without
prior notice.

Microchip and PICmicro are trademarks of Microchip Technology Inc., Chandler, U.S.A.

COMPILER BUG REPORTS:

The compiler has been carefully tested and debugged. It is, however, not possible to guarantee a 100 %
error free product.

If the compiler generates application code bugs, it is almost always possible to rewrite the program
slightly in order to avoid the bug. #pragma optimize can be used to avoid optimization bugs. Other
#pragma statements are also useful.

Please report cases of bad generated code and other serious program errors.

1) Investigate and describe the problem. If possible, please provide a complete C example program that
demonstrates the problem. A fragment from the generated assembly file is sometimes enough.

2) This service is intended for difficult compiler problems (not application problems).
3) Language: English
4) State the compiler version.
5) Send your report to support@bknd.com.

Document version: A

mailto:support@bknd.com

CC7A C Compiler B Knudsen Data

3

CONTENTS

1 INTRODUCTION ..7

1.1 SUPPORTED DEVICES ..7
1.2 INSTALLATION AND SYSTEM REQUIREMENTS ..8

Support for long file names ..8
User interface ...8

1.3 MPLAB SUPPORT..8
1.4 SUMMARY OF DELIVERED FILES ..9
1.5 SHORT PROGRAM EXAMPLE...9
1.6 DEFINING THE PICMICRO DEVICE..10
1.7 WHAT TO DO NEXT...11

2 VARIABLES...12

2.1 RAM ALLOCATION ..12
2.2 DEFINING VARIABLES ..13

Integer variables...13
Floating point ...14
IEEE754 interoperability ...14
Fixed point variables..15
Assigning variables to RAM addresses...17
Supported type modifiers..18
Local variables ...19
Temporary variables ..20
Arrays, structures and unions...20
Bitfields...21
Typedef ...21

2.3 USING RAM BANKS...21
The bank type modifier ...22
RAM bank selection..22
Local user update regions ..23

2.4 POINTERS ...23
Pointer models..23

2.5 CONST DATA SUPPORT...24
Data of size 16 bit or more ...25
Merging data ..25
Examples ..25

3 SYNTAX..27

3.1 STATEMENTS..27
if statement ...27
while statement ...27
for statement ...27
do statement..28
switch statement..28
break statement...28
continue statement..29
return statement..29
goto statement...29

3.2 ASSIGNMENT AND CONDITIONS ...29
Special syntax examples ...29
Conditions ..30
Bit variables ...30
Multiplication, division and modulo...31

CC7A C Compiler B Knudsen Data

4

Precedence of C operators ...31
Mixed variable sizes are allowed ...31

3.3 CONSTANTS..32
Constant expressions ..32
Enumeration ...33

3.4 FUNCTIONS...33
Function return values ...33
Parameters in function calls...33
Internal functions ...33

3.5 TYPE CAST ...34
3.6 ACCESSING PARTS OF A VARIABLE ..36
3.7 C EXTENSIONS ...37
3.8 PREDEFINED SYMBOLS...37

Extensions to the standard C keywords ..37
Standard C keywords used ...38
The sizeof operator ...38
Function offsetof(struct_type, struct_member)..38
Automatically defined macros and symbols ...38
Macro's __FILE__ and __LINE__ ...38
Macro's __DATE__ and __TIME__...38

3.9 UPWARD COMPATIBILITY...38

4 PREPROCESSOR DIRECTIVES..39

#define ..39
Macro concatenation..39
Macro stringification..39
#include ..40
#undef ...40
#if..41
#ifdef...41
#ifndef...41
#elif...41
#else..41
#endif..41
#error ...42
#warning...42
#message ..42

4.1 THE PRAGMA STATEMENT..42
#pragma alignLsbOrigin <a> [to] ...42
#pragma asm2var 1..42
#pragma assert [/] <type> <text field>...42
#pragma assume *<pointer> in rambank <n> ...42
#pragma bit <name> @ <N.B or variable[.B]> ...42
#pragma cdata[ADDRESS] = <VXS>, .., <VXS>...43
#pragma char <name> @ <constant or variable> ...43
#pragma chip [=] <device> ..43
#pragma computedGoto [=] <0,1>...43
#pragma config [<offset>] = <expression>..44
#pragma inlineMath <0,1>..44
#pragma insertConst ..44
#pragma interruptSaveCheck <n,w,e> ..44
#pragma library <0/1>..44
#pragma mainStack <minVarSize> @ <lowestStartAddr>...44
#pragma minorStack <maxVarSize> @ <lowestStartAddr> ..45
#pragma optimize [=] [N:] <0,1>...45
#pragma origin [=] <expression>...45

CC7A C Compiler B Knudsen Data

5

#pragma rambank [=] <-,0,1,2,..,15> ...46
#pragma rambase [=] <n>..46
#pragma resetVector <n>..46
#pragma return[<n>] = <strings or constants>...46
#pragma sharedAllocation ...47
#pragma stackLevels <n>..47
#pragma unlockISR ..47
#pragma updateBank [entry | exit | default] [=] <0,1> ..47
#pragma versionFile [<file>] ..47

4.2 PICMICRO CONFIGURATION...47

5 COMMAND LINE OPTIONS ..49

5.1 OPTIONS IN A FILE ..51
5.2 AUTOMATIC INCREMENTING VERSION NUMBER IN A FILE...52
5.3 ENVIRONMENT VARIABLES..52

6 PROGRAM CODE ..53

6.1 PROGRAM CODE PAGES..53
Another way of locating functions ..53
The page type modifier ...54
Page selection bits..54

6.2 SUBROUTINE CALL LEVEL CHECKING..54
Stack level checking when using interrupt..54
Functions shared between independent call trees ..55
Recursive functions...55

6.3 INTERRUPTS ...55
Custom interrupt save and restore ...58

6.4 STARTUP AND TERMINATION CODE ...59
Clearing ALL RAM locations ...59

6.5 LIBRARY SUPPORT ...59
Math libraries...60
Integer libraries..60
Fixed point libraries ...61
Floating point libraries ..62
Floating point library functions ...63
Fast and compact inline operations ...65
Combining inline integer math and library calls..65
Fixed point example ...66
Floating point example...66
How to save code..67

6.6 INLINE ASSEMBLY..67
Direct coded instructions ...72
Generating single instructions using C statements...72

6.7 OPTIMIZING THE CODE...74
Optimized Syntax..74
Peephole optimization ..74

6.8 THE CDATA STATEMENT ..74
Using the cdata statement ..75

7 DEBUGGING ...77

7.1 COMPILATION ERRORS...77
Error and warning details ..78
Some common compilation problems ...78

7.2 MPLAB DEBUGGING SUPPORT..78
7.3 ASSERT STATEMENTS...79
7.4 DEBUGGING IN ANOTHER ENVIRONMENT ..80

CC7A C Compiler B Knudsen Data

6

8 FILES PRODUCED...81

8.1 HEX FILE..81
8.2 ASSEMBLY OUTPUT FILE..81
8.3 VARIABLE FILE ..82
8.4 LIST FILE..83
8.5 FUNCTION CALL STRUCTURE ...83
8.6 PREPROCESSOR OUTPUT FILE...84

9 APPLICATION NOTES..85

9.1 COMPUTED GOTO...85
Built in skip() function for computed goto..85
Origin alignment ..86
Computed goto regions...86
Examples ..86

9.2 THE SWITCH STATEMENT..87

APPENDIX ...89

A1 PREDEFINED REGISTER NAMES ..89
A2 ASSEMBLY INSTRUCTIONS..89

Instruction execution time ..90

CC7A C Compiler B Knudsen Data

7

1 INTRODUCTION
Welcome to the CC7A C compiler for the Microchip PIC17 family of microcontrollers. The CC7A
compiler enables programming using a subset of the C language. Assembly is no longer required. The
reason for moving to C is clear. Assembly language is generally hard to read and errors are easily
produced.

C enables the following advantages compared to assembly:
• Source code standardization
• Faster program development
• Improved source code readability
• Easier documentation
• Simplified maintenance
• Portable code

The CC7A compiler was designed to generate tight and optimized code. The optimizer automatically
squeezes the code to a minimum. It is possible to write code that compiles into single instructions, but
with C syntax. This means that the C source code can be optimized by rewriting inefficient expressions.

The design priority was not to provide full ANSI C support, but to enable best possible usage of the
limited code and RAM resources. If the compiler generated less optimal code, this would force assembly
to be used for parts of the code.

CC7A features
• Local and global variables of 8, 16, 24 and 32 bits, plus bit variables
• Efficient reuse of local variable space
• Generates tight and optimized code
• Produces binary, assembly, list, COD, error, function outline and variable files
• Automatic updating of the page and bank selection bits
• Enhanced and compact support of bit operations, including bit functions
• Floating and fixed point math up to 32 bit
• Math libraries including functions like sin(), log(), exp(), sqrt(), etc.
• Supports standard C constant data and strings in program memory (const)
• Pointer models of 8 and 16 bits, mixed sizes in same application allowed
• RAM and/or ROM pointers
• The size of single pointers can be automatically chosen by the compiler
• Extended call level by using GOTO instead of CALL when possible
• Access to most assembly instructions through corresponding C statements
• Inline assembly
• Integrated interrupt support
• Device configuration information in source code

Size (in bits) of the variables supported by the different compiler editions:
STANDARD EXTENDED

integer 8+16+24 8+16+24+32
fixed 8+16+24 8+16+24+32
float 24+32 16+24+32

1.1 Supported devices
PIC17 core using 16 bit wide instructions:
• up to 65536 words of code in 1 - 8 code pages
• up to 16 RAM banks of 256 byte, plus unbanked RAM

CC7A C Compiler B Knudsen Data

8

1.2 Installation and System Requirements
The CC7A compiler uses 32 bit processing (console application) and runs on PC compatible machines
using Microsoft Windows.

Installing CC7A is normally done by running the installation program for the latest version. Multiple
versions can be installed.

CC7A is now ready to compile C files. Header and C source files have to be created and edited by a
separate editor (not included), for instance in the MPLAB suite.

The same installation program can be used to un-install the compiler. Alternatively can the CC7A files be
deleted without any un-installation procedure.

Support for long file names
CC7A supports long file names. It is also possible to use spaces in file names and include directory
names. Equivalent include directory option formats:

-I"C:\Program Files\cc7a"
-IC:\progra~1\cc7a

Equivalent include file formats:
#include "C:\Program Files\cc7a\C file"
#include "C:\progra~1\cc7a\Cfile~1"

The alternative to long names is the truncated short format. The truncated form is decided by the file
system. The best guess consists of the 6 first characters of the long name plus ~1. The last number may be
different (~2) if the first 6 characters are equal to another name in the same directory.

MPLAB version 5 uses and displays the short format only.

User interface
The CC7A compiler is a command-line program. It requires a list of command line options to compile a
C source file and produce the required files.

Starting CC7A from Windows can be done from the Start->Run menu. Then type the full path name
including cc7a.exe (or use Browse). The list of compiler command line options is then printed. The
normal way of using CC7A is to use it as a tool from an integrate environment like MPLAB.

Compiling a program requires a file name and command line options:

cc7a -a demo.c <enter>

1.3 MPLAB Support
CC7A can be selected as a tool in MPLAB which offers an integrated environment including editor and
tool support (compilers, assemblers, simulators, emulators, device programmers). Compilation errors are
easily handled. MPLAB supports point-and-click to go directly to the source line that needs correction.
CC7A supports the COD file format used by MPLAB for program debugging. CC7A offers two modes of
source file debugging is available: C or assembly mode. Thus, tracing programs in MPLAB can be done
using assembly instructions or C statements. MPLAB is free, and can be downloaded from the Microchip
Internet site.

Please refer to the supplied file ‘install.txt’ for a description on how to install and use CC7A in the
MPLAB environment.

CC7A C Compiler B Knudsen Data

9

1.4 Summary of Delivered Files

CC7A.EXE : compiler

PIC17.TXT : information on implemented features
CHIP.TXT : how to make new chip definitions
CDATA.TXT : info on the #pragma cdata statement
CONFIG.TXT : the chip configuration bits
MATH.TXT : math library support
INSTALL.TXT : installation guide and MPLAB setup

INT17XXX.H : interrupt header file
INT17XX.c : interrupt example

HEXCODES.H : direct coded instructions

OP.INC : command line options in a file

DEMO.C : syntax demo file
DEMO-VAR.C : defining RAM variables
DEMO-MAT.C : integer math
DEMO-FPM.C : floating point math
DEMO-FXM.C : fixed point math
DEMO-ROM.C : const data and DW
DEMO-PTR.C : tables and pointers
DEMO-INS.C : generating single instructions

MATH16.H : 8-16 bit math library
MATH24.H : 8-24 bit math library
MATH32.H (1): 8-32 bit math library
MATH16X.H : 16 bit fixed point library
MATH24X.H : 24 bit fixed point library
MATH32X.H (1): 32 bit fixed point library
MATH16F.H (1): 16 bit floating point library
MATH24F.H : 24 bit floating point library
MATH32F.H : 32 bit floating point library
MATH24LB.H : 24 bit floating point functions

(log,sqrt,cos,..)
MATH32LB.H : 32 bit floating point functions

(log,sqrt,cos,..)

17C42.H .. 17C766.H : PICmicro header files

README.TXT

(1) Not available on the DEMO and STANDARD edition

1.5 Short Program Example

/* global variables */
char a;
bit b1, b2;

/* assign names to port pins */
#pragma bit in @ PORTB.0

CC7A C Compiler B Knudsen Data

10

#pragma bit out @ PORTB.1

void sub(void)
{

char i; /* a local variable */

/* generate 20 pulses */
for (i = 0; i < 20; i++) {

out = 1;
nop();
out = 0;

}
}

void main(void)
{

// if (TO == 1 && PD == 1 /* power up */) {
// WARM_RESET:
// clearRAM(); // clear all RAM
// }

/* first decide the initial output level
on the output port pins, and then
define the input/output configuration.
This avoids spikes at the output pins. */

PORTC = 0b.0010; /* out = 1 */
DDRC = 0b.1111.0001; /* xxxx 0001 */

a = 9; /* value assigned to global variable */

do {
if (in == 0) /* stop if 'in' is low */

break;
sub();

} while (-- a > 0); /* 9 iterations */

// if (some condition)
// goto WARM_RESET;

/* main is terminated by a SLEEP instruction */
}

1.6 Defining the PICmicro Device
CC7A offers 3 ways to select the PICmicro device in an application:

1) By a command line option. MPLAB will generate this option automatically.

-p17C42

2) By a pragma statement in the source code. Note that the command line option will override the
selection done by #pragma chip.

#pragma chip PIC17C42

CC7A C Compiler B Knudsen Data

11

3) By using include to directly select a header file. This is not recommended because there will be an
error if the command line option is also used.

#include "17C42.h"

NOTE 1: When using a pragma statement or include file, remember to use it in the beginning of the C
program so that it is compiled first. However, some preprocessor statements like #define and #if may
proceed the #include/#pragma statement.

NOTE 2: CC7A will use automatic include of the right header file when using the –p<device> or
#pragma chip statement.

NOTE 3: If the header file does not reside in the default project folder, then the path name is required.
This can be supplied by a command line option as an include folder/directory (-I<path>).

NOTE 4: New header files can be defined according to file ‘chip.txt’.

1.7 What to do next
It is important to know the PICmicro family and the tools well. The easiest way to start is to read the
available documentation and experiment with the examples. Then move on to a simple project. Some
suggestions:
• study the supplied program samples
• compile code fragments and check out what the compiler accepts
• study the optional assembly file produced by the compiler

Typical steps when developing programs is as follows:
• describe the system, make requirements
• suggest solutions that satisfy these requirements
• write detailed code in the C language
• compile the program using the CC7A compiler
• test the program on a prototype or a simulator

Writing programs for the PICmicro microcontroller family requires careful planning. Program and RAM
space are limited, and the key question is often: Will the application code fit into the selected device?

CC7A C Compiler B Knudsen Data

12

2 VARIABLES
The compiler prints information on the screen when compiling. Most important are error messages, and
how much RAM and PROGRAM space the program requires. The compiler output information is also
written to file *.occ. Example:

CC7A Version 1.0, Copyright (c) B Knudsen Data, Norway 2003-2009
--> EXTENDED edition, 8-32 bit int, 16-32 bit float, 32k code words
17\demo.c:
Chip = 17C42
RAM: 00h : -------- -------- -------- ========
RAM: 20h : ======== ======== =====...
RAM: 40h : ...6**** ******** ******** ********
RAM: 60h : ******** ******** ******** ********
RAM: 80h : ******** ******** ******** ********
RAM: A0h : ******** ******** ******** ********
RAM: C0h : ******** ******** ******** ********
RAM: E0h : ******** ******** ******** ********
Bank 0:188 bytes free

RAM usage: 44 bytes (29 local), 188 bytes free
Optimizing - removed 9 code words (-2 %)
File 'demo.var'
File 'demo.asm'
File 'demo.lst'
File 'demo.occ'
Origin statement skips 7 words in codepage 0
File 'demo.hex'

Total of 207 code words (10 %)

2.1 RAM allocation

Priority when allocating variables:
1. Variables permanently assigned to a location
2. Local variables allocated by the compiler
3. Global variables allocated by the compiler

The compiler prints information on RAM allocation. A full map is printed for the unbanked area and
bank 0, which is useful to check out which RAM locations are still free. Detailed information on memory
allocation is written to file <src>.var when using the –V command line option.

Symbols:
* : free location
- : predefined or pragma variable
= : local variable(s)
. : global variable
7 : 7 free bits in this location

A table or structure can not be larger than the size of a bank (224 bytes). Variables are allocated from the
start of each bank.

CC7A C Compiler B Knudsen Data

13

2.2 Defining Variables
CC7A supports integer, fixed and floating point variables. The variable sizes are 1, 8, 16, 24 and 32 bit.
The default int size is 8 bit, and long is 16 bit. Char variables are unsigned by default and thus range from
0 to 255. Note that 32 bit integer variables are not supported by all CC7A editions.

Math libraries may have to be included for math operations (Chapter 6.5 Library Support on page 59).

CC7A uses LOW ORDER FIRST (or little-endian) on variables. This means that the least significant byte
of a variable is assigned to the lowest address. All variables are allocated from low RAM addresses and
upwards. Each RAM location can contain 8 bit variables. Address regions used for special purpose
registers are not available for normal allocation. An error message is produced when there is no space left
in a specific RAM bank or in the unbanked area.

Note that variables are assigned to the bank 0 by default. See Chapter 2.3 Using RAM Banks on page 21
on how to use RAM banks.

Special purpose registers are either predefined or defined in chip-specific header files. This applies to
WREG, INDF0, FSR0, PCL, PCLATH, ALUSTA, etc.

Integer variables
unsigned a8; // 8 bit unsigned
char a8; // 8 bit unsigned
unsigned long i16; // 16 bit unsigned

char varX;
char counter, L_byte, H_byte;
bit ready; // 0 or 1
bit flag, stop, semafor;

int i; // 8 bit signed
signed char sc; // 8 bit signed
long i16; // 16 bit signed

uns8 u8; // 8 bit unsigned
uns16 u16; // 16 bit unsigned
uns24 u24; // 24 bit unsigned
uns32 u32; // 32 bit unsigned

int8 s8; // 8 bit signed
int16 s16; // 16 bit signed
int24 s24; // 24 bit signed
int32 s32; // 32 bit signed

The bitfield syntax can also be used:

unsigned x : 24; // 24 bit unsigned
int y : 16; // 16 bit signed

The value range of the variables are:

TYPE SIZE MIN MAX
---- ---- --- ---
int8 1 -128 127

int16 2 -32768 32767

CC7A C Compiler B Knudsen Data

14

int24 3 -8388608 8388607
int32 4 -2147483648 2147483647

uns8 1 0 255
uns16 2 0 65535
uns24 3 0 16777215
uns32 4 0 4294967295

Floating point
The compiler supports 16, 24 and 32 bit floating point. The 32 bit floating point can be converted to and
from IEEE754 by 3 instructions (macro in math32f.h).

Supported floating point types:
float16 : 16 bit floating point
float, float24 : 24 bit floating point
double, float32 : 32 bit floating point

Format Resolution Range
16 bit 2.4 digits +/- 3.4e38, +/- 1.1e-38
24 bit 4.8 digits +/- 3.4e38, +/- 1.1e-38
32 bit 7.2 digits +/- 3.4e38, +/- 1.1e-38

Note that 16 bit floating point is intended for special use where accuracy is less important. More details
on the floating point formats is found in ‘math.txt’. Information on floating point libraries is found in
Chapter 6.5 Library Support on page 59.

Floating point exception flags
The floating point flags are accessible in the application program. At program startup the flags should be
initialized:

FpFlags = 0; // reset all flags, disable rounding
FpRounding = 1; // enable rounding

Also, after an exception is detected and handled in the application, the exception bit should be cleared so
that new exceptions can be detected. Exceptions can be ignored if this is most convenient. New
operations are not affected by old exceptions. This also enables delayed handling of exceptions. Only the
application program can clear exception flags.

char FpFlags; // contains the floating point flags

bit FpOverflow @ FpFlags.1; // fp overflow
bit FpUnderFlow @ FpFlags.2; // fp underflow
bit FpDiv0 @ FpFlags.3; // fp divide by zero
bit FpDomainError @ FpFlags.5; // domain error
bit FpRounding @ FpFlags.6; // fp rounding
// FpRounding=0: truncation
// FpRounding=1: unbiased rounding to nearest LSB

IEEE754 interoperability
The floating point format used is not equivalent to the IEEE754 standard, but the difference is very small.
The reason for using a different format is code efficiency. IEEE compatibility is needed when floating
point values are exchanged with the outside world. It may also happen that inspecting variables during
debugging requires the IEEE754 format on some emulators/debuggers. Macros for converting to and
from IEEE754 are available:

CC7A C Compiler B Knudsen Data

15

math32f.h:
// before sending a floating point value:
float32ToIEEE754(floatVar);

// change to IEEE754 (3 instr.)

// before using a floating point value received:
IEEE754ToFloat32(floatVar);

// change from IEEE754 (3 instr.)

math24f.h:
float24ToIEEE754(floatVar);

// change to IEEE754 (3 instr.)
IEEE754ToFloat24(floatVar);

// change from IEEE754 (3 instr.)

Fixed point variables
Fixed point can be used instead of floating point, mainly to save program space. Fixed point math use
formats where the decimal point is permanently set at byte boundaries. For example, fixed8_8 use one
byte for the integer part and one byte for the decimal part. Fixed point operations maps nicely to integer
operations except for multiplication and division which are supported by library functions. Information
on fixed point libraries is found in Chapter 6.5 Library Support on page 59.

fixed8_8 fx;

fx.low8 : Least significant byte, decimal part
fx.high8 : Most significant byte, integer part

MSB LSB 1/256 = 0.00390625
07 01 : 7 + 0x01*0.00390625 = 7.0039625
07 80 : 7 + 0x80*0.00390625 = 7.5
07 FF : 7 + 0xFF*0.00390625 = 7.99609375
00 00 : 0
FF 00 : -1
FF FF : -1 + 0xFF*0.00390625 = -0.0039625
7F 00 : +127
7F FF : +127 + 0xFF*0.00390625 = 127.99609375
80 00 : -128

Convention: fixed<S><I>_<D> :
<S> : 'U' : unsigned
<none>: signed
<I> : number of integer bits
<D> : number of decimal bits

Thus, fixed16_8 uses 16 bits for the integer part plus 8 bits for the decimals, a total of 24 bits. The
resolution for fixed16_8 is 1/256=0.0039 which is the lowest possible increment. This is equivalent to 2
decimal digits (actually 2.4 decimal digits).

Built in fixed point types:

Type: #bytes Range Resolution

fixed8_8 2 (1+1) -128, +127.996 0.00390625
fixed8_16 3 (1+2) -128, +127.99998 0.000015259
fixed8_24 4 (1+3) -128, +127.99999994 0.000000059605
fixed16_8 3 (2+1) -32768, +32767.996 0.00390625

CC7A C Compiler B Knudsen Data

16

fixed16_16 4 (2+2) -32768, +32767.99998 0.000015259
fixed24_8 4 (3+1) -8388608, +8388607.996 0.00390625

fixedU8_8 2 (1+1) 0, +255.996 0.00390625
fixedU8_16 3 (1+2) 0, +255.99998 0.000015259
fixedU8_24 4 (1+3) 0, +255.99999994 0.000000059605
fixedU16_8 3 (2+1) 0, +65535.996 0.00390625
fixedU16_16 4 (2+2) 0, +65535.99998 0.000015259
fixedU24_8 4 (3+1) 0, +16777215.996 0.00390625

(additional types with decimals only; no integer part)
fixed_8 1 (0+1) -0.5, +0.496 0.00390625
fixed_16 2 (0+2) -0.5, +0.49998 0.000015259
fixed_24 3 (0+3) -0.5, +0.49999994 0.000000059605
fixed_32 4 (0+4) -0.5, +0.4999999998 0.0000000002328

fixedU_8 1 (0+1) 0, +0.996 0.00390625
fixedU_16 2 (0+2) 0, +0.99998 0.000015259
fixedU_24 3 (0+3) 0, +0.99999994 0.000000059605
fixedU_32 4 (0+4) 0, +0.9999999998 0.0000000002328

To sum up:
1. All types ending on _8 have 2 correct digits after decimal point
2. All types ending on _16 have 4 correct digits after decimal point
3. All types ending on _24 have 7 correct digits after decimal point
4. All types ending on _32 have 9 correct digits after decimal point

Fixed point constants
The 32 bit floating point format is used during compilation and calculation.

fixed8_8 a = 10.24;
fixed16_8 a = 8 * 1.23;
fixed8_16 x = 2.3e-3;
fixed8_16 x = 23.45e1;
fixed8_16 x = 23.45e-2;
fixed8_16 x = 0.;
fixed8_16 x = -1.23;

Constant rounding error example:
Constant: 0.036
Variable type: fixed16_8 (1 byte for decimals)

Error calculation: 0.036*256=9.216. The byte values assigned to the
variable are simply 0,0,9. The error is (9/256-0.036)/0.036 = -0.023.
The compiler prints this normalized error as a warning.

Type conversion
The fixed point types are handled as subtypes of float. Type casts are therefore infrequently required.

Fixed point interoperability
It is recommended to stick to one fixed point format in a program. The main problem when using mixed
types is the enormous number of combinations which makes library support a challenge. However, many
mixed operations are allowed when CC7A can map the types to the built in integer code generator:

fixed8_16 a, b;
fixed_16 c;
a = b + c; // OK, code is generated directly

CC7A C Compiler B Knudsen Data

17

a = b * 10.22; // OK: library function is supplied

a = b * c; // a new user library function is required!

// a type cast can select an existing library function:
a = b * (fixed8_16)c;

Assigning variables to RAM addresses
All variables, including structures and arrays can be assigned to fixed address locations. This is useful for
assigning names to port pins. It is also possible to define overlapping variables (similar to union).
Variables can overlap parts of another variable, table or structure. Multiple levels of overlapping are
allowed. The syntax is:

<variable_definition> @ <address | (constant_expression)>;
<variable_definition> @ <variable_element>;

Examples:

char th @ 0x25;
//bit th1 @ 0x25.1; // overlap warning
bit th1 @ th.1; // no warning

char tty;
bit b0;
char io @ tty;
bit bx0 @ b0;
bit bx2b @ tty.7;
//char tui @ b0; // size exceeded
//long r @ tty; // size exceeded

char tab[5];
long tr @ tab;
struct {

long tiM;
long uu;

} ham @ tab;

char aa @ ttb[2]; // char ttb[10];
bit ab @ aa.7; // a second level of overlapping
bit bb @ ttb[1].1;
size2 char *cc @ da.a; // 'da' is a struct
char dd[3] @ da.sloi[1].pi.ncup;
uns16 ee @ fx.mid16; // float32 fx;
TypeX ii @ tab; // TypeX is a typedef struct

An expression can define the address of a variable. This makes it easier to move a collection of variables.

char tty @ (50+1-1+2);
bit tt1 @ (50+1-1+2+1).3;
bit tt2 @ (50+1-1+2+1).BX1; // enum { .., BX1, .. };

Pragma statements can also be used (limited to bit and char types):
#pragma char port @ PORTC
#pragma char varX @ 0x23
#pragma bit IOpin @ PORTA.1
#pragma bit ready @ 0x20.2

CC7A C Compiler B Knudsen Data

18

If the compiler detects double assignments to the same RAM location, this will cause a warning to be
printed. The warning can be avoided if the second assignment uses the variable name from the first
assignment instead of the address (#pragma char var2 @ var1).

An alternative is to use the #define statement:

#define PORTX PORTC
#define ready PA2

The shadowDef type modifier allow local and global variables and function parameters to be assigned to
specific addresses without affecting normal variable allocation. The compiler will ignore the presence of
these variables when allocating global and local variable space.

shadowDef char gx70 @ 0x70; // global or local variable

The above definition allows location 0x70 to be inspected and modified through variable 'gx70'.

Function parameters can be assigned to addresses. No other variables will be assigned by the compiler to
these locations. Such manual allocation can be useful when reusing RAM locations manually.

void writeByte(char addr @ 0x70, char value @ 0x71) { .. }

This syntax is also possible on function prototypes.

Supported type modifiers
static char a; /* a global variable; known in the current module
only, or having the same name scope as local variables when used in a
local block */

extern char a; // global variable (in another module)

auto char a; // local variable
// 'auto' is normally not used

register char a; // ignored type modifier

const char a; /* ‘const’ tells that compiler that the data is not
modified. This allows global data to be put in program memory. */

volatile char a; /* ignored type modifier. Note that CC7A use the
address to automatically decide that most of the special purpose
registers are volatile */

page0 void fx(void); // fx() resides in codepage 0
// page0,page1,..,page7

bank0 char a; // variable ‘a’ resides in RAM bank 0
// bank0,bank1,..,bank15
// shrBank : unbanked locations

size2 char *px; // pointer px is 16 bit wide
// size1,size2

shadowDef char gx70 @ 0x70; /* a variable can be assigned to a
location without affecting normal allocation */

CC7A C Compiler B Knudsen Data

19

Local variables
Local variables are supported. The compiler performs a safe compression by checking the scope of the
variables and reusing the locations when possible. The limited RAM space in therefore used efficiently.
This feature is very useful, because deciding which variables can safely overlap is time consuming,
especially during program redesign. Function parameters are located together with local variables.

Variables should be defined in the innermost block, because this allows best reuse of RAM locations. It is
also possible to add inner blocks just to reduce the scope of the variables as shown in the following
example:

void main(void)
{

char i; /* no reuse is possible at the
outermost level of 'main' */

i = 9;
{ // an inner block is added

char a;
for (a = 0; a < 10; a++)

i += fx(PORTB,0);
}
sub(i);
{ // another inner block to enable better reuse

char b = s + 1;
int i1 = -1, i2 = 0;
// more code

}
}

Local variables may have the same name. However, the compiler adds an extension to produce a unique
name in the assembly, list and COD files. When a function is not called (defined but not in use), then all
parameters and local variables are truncated to the same (unused) location.

Local variables will normally reside in a single block not crossing any bank boundaries, but it is possible
to define a large stack that may cross bank boundaries. The compiler will not move variables from
unbanked area to bank 0.

The stack for local variables, parameters and temporary variables is normally allocated separately in each
bank and the unbanked area. The bank is normally defined the same way as global variables through
#pragma rambank or bank type modifiers. This makes it possible to split the stack into several
independent stacks. Using a single stack is normally recommended, but sometimes this is not possible
when the stack size is too large.

Using a large stack
It is possible to use a single main stack for all local variables. The main stack is not an additional stack,
but tells the compiler where the main stack is located (which bank). The main stack can be larger than a
single bank, and is defined by the following pragma statement:

#pragma mainStack 3 @ 0x110 // set lower main stack address

Using this pragma means that local variables, parameters and temporary variables of size 3 bytes and
larger (including tables and structures) will be stored in a single stack allocated no lower than address
0x110. Smaller variables and variables with a bank modifier will be stored according to the default/other
rules. Using size 0 means all variables including bit variables.

CC7A C Compiler B Knudsen Data

20

Note that #pragma rambank is ignored for variables stored in the main stack. Addresses ranging from
0x100 to 0x1FF are equivalent to the bank1 type modifier.

In some cases it will be efficient to use unbanked area or a specific bank for local variables up to a certain
size. This is possible by using the following pragma:

#pragma minorStack 1 @ 0x18

In this case, local variables, parameters and temporary variables up to 1 byte will be put in unbanked area
from address 0x18 to 0x1F. Larger variables and variables with a bank modifier will be stored according
to the default/other rules. Using size 0 means bit variables only. This pragma can be used in combination
with the main stack. The variable size defined by the minor stack has priority over the main stack.

The most efficient RAM usage is to use a single stack. Separation into different stacks increase total
RAM usage, and should be avoided if possible.

Temporary variables
Operations like multiplication, division, modulo division and shifts often require temporary variables.
However, the compiler needs NO PERMANENT SPACE for temporary variables.

The temporary variables are allocated the same way as local variables, but with a narrow scope. This
means that the RAM locations can be reused in other parts of the program. This is an efficient strategy
and often no extra space is required in application programs.

Arrays, structures and unions
One dimensional arrays are implemented.

char t[10], i, index, x, temp;
uns16 tx[3];

tx[i] = 10000;
t[1] = t[i] * 20; // ok
t[i] = t[x] * 20; // not allowed
temp = t[x] * 20;
t[i] = temp;

Normal C structures can be defined, also nested types. Unions are allowed.

struct hh {
long a;
char b;

} vx1;

union {
struct {

char a;
int16 i;

} pp;
char x[4];
uns32 l;

} uni;

// accessing structure elements
vx1.a = -10000;
uni.x[3] = vx1.b - 10;

CC7A C Compiler B Knudsen Data

21

The equivalent of a (small) multidimensional array can be constructed by using a structure. However,
only one index can be a variable.
struct {

char e[4];
char i;

} multi[5];

multi[x].e[3] = 4;
multi[2].e[i+1] += temp;

Bitfields
Bitfields in structures are allowed. The size has to be 1, 8, 16, 24 or 32 bit.

struct bitfield {
unsigned a : 1;
bit c;
unsigned d : 32;
char aa;

} zz;

The CC7A compiler also allows the bitfield syntax to be used outside structures as a general way of
defining variable size:

int x : 24; // a 24 bit signed variable

Typedef
Typedef allows defining new type identifiers consisting of structures or other data types:

typedef struct hh HH;
HH var1;
typedef unsigned ux : 16; // equal to uns16
ux r, a, b;

2.3 Using RAM Banks
The RAM bank definitions are:

unbanked: 0x018/0x1A – 0x01F
bank 0: 0x020 – 0x0FF
bank 1: 0x120 – 0x1FF
bank 2: 0x220 – 0x2FF
..
bank 15: 0xF20 – 0xFFF

Using more than one RAM bank is done by setting the active rambank:

/* variables proceeding the first rambank statement are placed in
bank 0. This is also valid for local variables and parameters */

#pragma rambank 1

char a,b,c; /* a,b and c are located in bank 1 */
/* parameters and local variables in functions placed here are also
located in bank 1 ! */

CC7A C Compiler B Knudsen Data

22

#pragma rambank 0
char d; /* located in bank 0 */

The compiler automatically finds the first free location in the selected bank.

NOTE: Local variables and function parameters also have to be located. It may be necessary to use
#pragma rambank between some of the functions and even INSIDE a function. The recommended
strategy is to locate local variables and function parameters in one bank. The unbanked locations are
selected by:

#pragma rambank –

The bank type modifier
It is also possible to use the bank type modifier to select the RAM bank.

bank0..bank15, shrBank : can replace #pragma rambank
// shrBank is the unbanked RAM locaions

bank1 char tx[3]; // tx[] is located in bank 1

The bank type modifier defines the RAM bank to locate the variable. It can locate global variables,
function parameters and local variables. The bank type modifier applies to the variable itself, but not to
the data accessed. This difference is important for pointers.

NOTE 1: The bank type modifier has higher priority than #pragma rambank.

NOTE 2: Using 'extern' makes it possible to state the variable definition several times. However, the first
definition defines the rambank, and later definitions must use the same bank.

NOTE 3: When defining a function prototype, this will normally not locate the function parameters.
However, when adding a bank type modifier to a function parameter in a prototype, this will define the
bank to be used for this variable.

If variables are located in non-existing RAM banks for a device, these variables are mapped into existing
RAM banks (bank 0). This applies to the bank type modifiers and the #pragma rambank statement.

Using RAM banks requires some planning. The optimal placement requires least code to update the bank
selection bits. Some advise when locating variables:

1. All local variables and function parameters should preferably be put in one bank.
2. The most frequently used variables (except arrays) should be placed in same bank.
3. Try to locate variables which are close related to each other in the same bank.
4. Try to locate all variables accessed in the same function in the same bank.

RAM bank selection
RAM and special purpose registers can be located in up to 16 banks. A special bank instruction is used to
select the right bank.

The bank selection bits are automatically checked and updated by the compiler, and attempts to update
the bank in the source code may be removed by the compiler. This feature can be switched off which
means that correct updating has to be done in the source code.

The compiler uses global optimizing techniques to minimize the extra code needed to update the bank
selection bits. Removing all unnecessary updating is difficult. However, there should be few redundant
instructions.

CC7A C Compiler B Knudsen Data

23

NOTE: The compiler REMOVE attempts to use the bank instruction (MOVLR/MOVLB) in user source
code. However, it is possible to switch to manual updating by the -b command line option, or locally by a
pragma statement.

Local user update regions
The automatic updating can be switched off locally. This is done by pragma statements:

#pragma updateBank 0 /* OFF */
#pragma updateBank 1 /* ON */

These statements can be inserted anywhere, but they should surround a smallest possible region. Please
check the generated assembly code to ensure that the desired results is achieved. Another use of #pragma
updateBank is to instruct the bank update algorithm to do certain selections. Refer to Section #pragma
updateBank on page 47 in Chapter 4.1 The pragma Statement for more details.

NOTE: The safest coding is to not assume any specific contents of the bank selection bits when a local
update region is started. The compiler uses complex rules to update the bank selection bits outside the
local regions. Also, all updating inside a local update region are traced to enable optimal updating when
the local update region ends.

2.4 Pointers
Single level pointers is implemented.

char t[10], *p;

p = &t[1];
*p = 100;
p[2] ++;

The compiler allows using a 8 bit RAM pointer when all accesses using this pointer is limited to the same
bank. The bank is automatically detected and used. In some cases it may be needed to define this bank
directly. An error message is printed if a restricted pointer is loaded with an address from the wrong
RAM bank.

bank1 char t[10];
bank3 char *pi;
#pragma assume *pi in rambank 1
..
pi = &t[2];

Pointer models
Using 8 bit pointers when possible saves both code and RAM space. CC7A allows the size of all single
pointers to be decided automatically. However, pointers in structures and arrays have to be decided in
advance, by using the memory model command line options or a size type modifier. Note that the
operator ‘sizeof(pointer)’ will lock the size according to the chosen default model. Using sizeof(pointer)
is normally not required and should be avoided.

That default pointer sizes are used only when the pointer size is not chosen dynamically. The priority
when deciding the pointer size is:
1) Pointer size type modifiers
2) Automatic chosen pointer size (single pointers)
3) Pointer size chosen according to the default model

CC7A C Compiler B Knudsen Data

24

Command line options:
 -mc1 : default 'const' pointer size is 1 byte (8 bits)
 -mc2 : default 'const' pointer size is 2 bytes (16 bits)
 -mr1 : default RAM pointer size is 1 byte
 -mr2 : default RAM pointer size is 2 bytes
 -mm1 : default pointer size is 1 byte (all pointer types)
 -mm2 : default pointer size is 2 bytes (all pointer types)

Pointer size type modifiers:
• size1: pointer size is 1 byte (8 bits)
• size2: pointer size is 2 bytes (16 bits)

bank1 size2 float *pf;

The supported pointer types are:
a) 8 bit pointer to RAM. The compiler will automatically update the bank register (BSR).
b) 16 bit pointer to RAM. This format is required only when the same pointer have to access locations

in different 256 byte RAM segments.
c) 8 bit pointer to program memory. This pointer can access up to 256 byte data.
d) 16 bit pointer to program memory. This pointer can access more than 256 byte data.
e) 16 bit pointer to RAM or program memory. Bit 15 is used to detect RAM or program memory

access.

2.5 Const Data Support
CC7A supports constant data stored in program memory. The C keyword 'const' tells the compiler that
these data do not change. Examples:

const char *ps = "Hello world!";
const float ftx[] = { 1.0, 33.34, 1.3e-10 };
..
t = *ps;
ps = "";
fx = ftx[i];

The compiler will normally insert 'const' data at the end of the user code (high address). The following
pragma statement will allow the 'const' data to be inserted between two user functions, or at a specific
address (if using #pragma origin first):

#pragma insertConst

The implementation of constant data supports the following features:
• both 8 and 16 bit pointers to const data in the same application
• the size of single const pointers can be chosen automatically
• const pointers can access both RAM and program memory
• the compiler will not put all constant data in a single table, but rather make smaller tables if this

saves code space
• duplicate strings and other data are automatically merged to save space

Recommendations:
It is recommended to use small data tables and structures. This allows the compiler to merge equal data
items and build optimal blocks of constant data.

CC7A C Compiler B Knudsen Data

25

Limitations:
1) The compiler will not initialize RAM variables on startup
2) Data items of 16 bit or more in structures with more than 256 byte data must be aligned

Data of size 16 bit or more
The compiler allows access of 8, 16, 24 and 32 bits data, including fixed and floating point formats.
When using arrays or structures with more than 256 byte data, single data items have to be aligned.
Alignment means that there should not be any remainder when dividing the offset with the size of the
data item. This is only a problem when defining structures containing data of different sizes.

const long tl[5] = { 10000, -10000, 0, 30000, -1 };
const uns24 th[] = { 1000000, 0xFFFFFF, 9000000 };
const int32 ti[] = { 1000000000, 0x7FFFFFFF,

-900000000 };
const fixed8_8 tf[] = { -1.1, 200.25, -100.25 };
const float tp[] = { -1.1, 200.25, 23e20 };
const double td[] = { -1.1, 200.25, 23e-30};
const float16 ts[] = { -1.1, 200.25, 23e-30};
..
l = tl[i]; // reading a long integer
d = td[x]; // reading a double float constant

Merging data
The compiler will automatically merge equal strings and sub-strings, and also other data items. Using
small tables will increase the chance of finding data items that can be merged. Note that data containing
initialized addresses (ROM and RAM) are not merged. Examples:

1. The string "world!" is identical to the last part of the string "Hello world!". It is therefore not required
to use additional storage for the first string. The compiler handles the address calculations so that
merged (or overlapping) strings are handled fully automatically. Note that the string termination '\0'
also has to be equal, otherwise merging is not possible. For example, the string "world" can not be
merged with the above strings.

2. Merging applies to all kinds of data. Data is compared byte by byte. This allows the first two of the
following tables to be merged with the last one.

const char a1[] = { 10, 20, 30 };
const char a2[] = "ab";
const char a3[] = { 5, 10, 20, 30, 'a', 'b', 0 };

Examples
A table of pointers to strings:

const struct {
const char *s;

} tb[] = {
"Hello world",
"Monday",
"",
"world" // automatically merged with first string

};

p = tb[i].s; // const char *p; char i;

CC7A C Compiler B Knudsen Data

26

t = *p++; // char t;
t = p[x]; // char x;

Note that 'const struct' is required to put the pointer array in program memory. Using 'const char *tx[];'
means that the strings resides in program memory, but the table 'tx[]' resides in RAM.

String parameters:

myfunc(“Hello”); // void myfunc(const char *str);
myfunc(&tab[i]); // char tab[20]; // string in RAM
myfunc(ctab); // const char ctab[] = “A string”;

CC7A C Compiler B Knudsen Data

27

3 SYNTAX

3.1 Statements
C statements are separated by semicolons and surrounded by block delimiters:
{ <statement>; .. <statement>; }

The typical statements are:
// if, while, for, do, switch, break, continue,
// return, goto, <assignment>, <function call>
while (1) {

k = 3;
X:

if (PORTA == 0) {
for (i = 0; i < 10; i++) {

pin_1 = 0;
do {

a = sample();
s += a;

}
while (s < 200);

}
reg -= 1;

}
if (PORTA == 4)

return 5;
else if (count == 3)

goto X;
if (PORTB.3)

break;
}

if statement
if (<condition>)

<statement>;
else if (<condition>)

<statement>;
else

<statement>;

The else if and else parts are optional.

while statement
while (<condition>)

<statement>;

while (1) { .. } // infinite loop

for statement
for (<initialization>; <condition>; <increment>)

<statement>;

initialization: legal assignment or empty
condition: legal condition or empty

CC7A C Compiler B Knudsen Data

28

increment: legal increment or assignment or empty

for (v = 0; v < 10; v++) { .. }
for (; v < 10; v++) { .. }
for (v = 0; ; v--) { .. }
for (i=0; i<5; a.b[x]+=2) { .. }

do statement
do

<statement>;
while (<condition>);

switch statement
The switch statement supports variables up to 32 bit. The generated code is more compact and executes
faster than the equivalent 'if - else if' chain.

switch (<variable>) {
case <constant1>:

<statement>; .. <statement>;
break;

case <constant2>:
<statement>; .. <statement>;
break;

..
default:

<statement>; .. <statement>;
break;

}

<variable>: all 8-32 bit integer variables including W/WREG
break: optional
default: optional, can be put in the middle of the switch statement

switch (token) {
case 2: i += 2; break;
case 9:
case 1:
default:

if (PORTA == 0x22) break;

case 'P':
pin1 = 0; i -= 2;
break;

}

break statement
The ‘break;’ statement is used inside loop statements (for, while, do) to terminate the loop. It is also used
in switch statements.

while (1) {
..
if (var == 5)

break;
..

}

CC7A C Compiler B Knudsen Data

29

continue statement
The ‘continue;’ statement is used inside loop statements (for, while, do) to force the next iteration of the
loop to be executed, skipping any code in between. In while and do-while loops, the loop condition is
executed next. In for loops, the increment is processed before the loop condition.

for (i = 0; i < 10; i++) {
..
if (i == 7)

continue;
..

}

return statement
return <expression>; /* exits the current function */

return; /* no return value */
return i+1; /* return value */

goto statement
goto <label>;

Jumps to a location, forward or backward.

goto XYZ;
..
XYZ:
..

3.2 Assignment and Conditions
Basic assignment examples:

var1 = x + y;
i = x - 100;
y ^= 'A'; // y = y ^ 'A';
W |= 0x10; // W = W | 0x10;
a = b = c + 1; // multiple assignment

// operations: + - & | ^ * / % << >>

flag = 1; // set bit variable

i++; /*or*/ ++i; /*or*/ i = i + 1;
i--; /*or*/ --i; /*or*/ i = i - 1;

Special syntax examples
#define mx !a
if (!mx) ..

W = W - 3; // ADDLW 256-3
b = fx() - 3;

// Post- and pre-incrementing of pointers
char *cp;
t = *--cp;

CC7A C Compiler B Knudsen Data

30

t |= *++cp;
*cp-- = t;
t = *cp++ + 10;

// pre-incrementing of variables
t = ++b | 3;
sum(--b, 10);
t = tab[--b];

Conditions
[++ | --] <variable> <cond-oper> <value>

[&& condition]
[|| condition]

cond-oper : == != > >= < <=

if (x == 7) ..
if (Carry == 1 && a1 < a2) ..
if (y > 44 || Carry || x != z) ..
if (--index > 0) ..
if (bx == 1 || ++i < max) ..
if (sub_1() != 0) ..

Bit variables
bit a, b, c, d;
char i, j, k;

bit bitfun(void) // bit return type (using Carry bit)
{

return 0; // Clear Carry, return
return 1; // Set Carry, return
nop();
return Carry; // return
return b; // Carry=b; return
return !i;
return b & PORTA.3;

}
..
b = bitfun2(bitfun(), 1);
if (bitfun()) ..
if (!bitfun()) ..
if (bitfun() == 0) ..

b = !charfun();
b = charfun() > 0;
b = !bitfun();
Carry = bitfun();
b &= bitfun();

if (bitfun() == b) ..
if (bitfun() == PORTA.1) ..
i += b; // conditional increment
i -= b; // conditional decrement
i = k+Carry;
i = k-Carry;
b = !b; // Toggle bit (or b=b==0;)

CC7A C Compiler B Knudsen Data

31

b = !c; // assign inverted bit
PORTA.0 = !Carry;
a &= PORTA.0;
PORTA.1 |= a;
PORTA.2 &= a;

// assign condition using 8 bit char variables
b = !i;
b = !W;
b = j == 0;
b = k != 0;
b = i > 0;

// assign bit conditions
b = c&d; //also &&, |, ||, +, ^ , ==, !=, <, >, >=, <=

// conditions using bit variables
if (b == c) .. // also !=, >, <, >=, <=

// initialized local bit variables
bit bx = cx == '+';
bit by = fx() != 0xFF;

Multiplication, division and modulo
multiplication : a16 = b16 * c16; // 16 * 16 bit

A general multiplication algorithm is implemented, allowing most combinations of variable sizes.
Including a math library allows library calls to be generated instead of inline code. The algorithm
makes shortcuts when possible, for instance when multiplying by 2. This is treated as a left shift.
division : a16 = b16 / c8; // 16 / 8 bit
modulo : a32 = b32 % c16; // 32 % 16 bit

The division algorithm also allows most combinations of variable sizes. Shortcuts are made when
dividing by 2 (or 2*2*..). These are treated as right shifts.

Precedence of C operators
Highest: ()

++ --
* / %
+ -
<< >>
< <= > >=
== !=
&
^
|
&&
||

Lowest: = += -= *= /= etc.

Mixed variable sizes are allowed
a32 = (uns32) b24 * c8; // 24 * 8 bit, result 32 bit
a16 = a16 + b8; // 16 + 8 bit, result 16 bit

CC7A C Compiler B Knudsen Data

32

Most combinations of variables are allowed, the compiler performs sign extension is required. Multiple
operations in the same expression are allowed when using 8 bit variables.
a8 = b8 + c8 + d8 + 10;

3.3 Constants
x = 34; /* decimal */
x = 0x22; /* hexadecimal */
x = 'A'; /* ASCII */
x = 0b010101; /* binary */

x = 0x1234 / 256; /* 0x12 : MSB */
x = 0x1234 % 256; /* 0x34 : LSB */
x = 33 % 4; /* 1 */
x = 0xF & 0xF3; /* 3 */
x = 0x2 | 0x8; /* 10 */
x = 0x2 ^ 0xF; /* 0b1101 */
x = 0b10 << 2; /* 8 */
x = r1 + (3 * 8 - 2); /* 22 */
x = r1 + (3 + 99 + 67 - 2); /* 167 */
x = ((0xF & 0xF3) + 1) * 4; /* 16 */

Please note that parentheses are required in some cases.

Constant expressions
The size of integers is by default 8 bits for this compiler (other C compilers use typically 16 or 32 bits
depending on the CPU capabilities). An error is printed if the constant expression loses significant bits
because of value range limitations.

char a;
a = (10 * 100) / 256; // an error is printed
a = (10L * 100) / 256; // no error
a = ((uns16) 10 * 100) / 256; // no error
a = (uns16) (10 * 100) / 256; // error again
a = (10 * 200) / 256; // no error, 200 is a long int

Adding a L means conversion to long (16 bit).

The command line option -cu force 32 bit evaluation of constants so that no significant bits are lost.

Some new built in types can also be used:

TYPE SIZE MIN MAX
---- ---- --- ---
int8 : 8 bit signed 1 -128 127
int16: 16 bit signed 2 -32768 32767
int24: 24 bit signed 3 -8388608 8388607
int32: 32 bit signed 4 -2147483648 2147483647
uns8 : 8 bit unsigned 1 0 255
uns16: 16 bit unsigned 2 0 65535
uns24: 24 bit unsigned 3 0 16777215
uns32: 32 bit unsigned 4 0 4294967295

The constant type is by default the shortest signed integer. Adding a U behind a constant means that it is
treated as unsigned. Note that constants above 0x7FFFFFFF are unsigned by default (with or without a U
behind).

CC7A C Compiler B Knudsen Data

33

Enumeration
An enumeration is a set of named integer constants. It can often replace a number of #define statements.
The numbering starts with 0, but this can be changed:
enum { A1, A2, A3, A4 };
typedef enum { alfa = 8, beta, zeta = -4, eps, } EN1;
EN1 nn;
enum con { Read_A, Read_B };
enum con mm;
mm = Read_A;
nn = eps;

3.4 Functions
Function definitions can look as follows:
void subroutine2(char p) { /* C statements */}
bit function1(void) { }
long function2(char W) { }
void main(void) { }

Function calls:
subroutine1();
subroutine2(24);
bitX = function1();
x = function2(W);
y = fx1(fx3(x));

The compiler needs to know the definition of a function before it is called to enable type checking. A
prototype is a function definition without statements. Prototypes are useful when the function is called
before it is defined. The parameter name is optional in prototypes:

char function3(char);
void subroutine1(void);

Function return values
Functions can return values up to 4 bytes wide. Return values can be assigned to a variable or discarded.
Handling and using return values is automated by the compiler.

The least significant byte is always placed in W. Signed variables and variables larger than 8 bits also use
temporary variables on the computed stack.

A function can return any value type. The W register is used for 8 bit return value if possible. The Carry
flag is used for bit return values. The compiler will automatically allocate a temporary variable for other
return types. A function with no return value is of type void.

Parameters in function calls
There is no fixed limit on the number of parameters allowed in function calls. Space for parameters are
allocated in the same way as local variables which allows efficient reuse. The bit type is also allowed.
Note that if W is used, this has to be the LAST parameter.

char func(char a, uns16 b, bit ob, char W);

Internal functions
The internal functions provide direct access to certain inline code:
btsc(Carry); // void btsc(char); - BTFSC f,b
btss(bit2); // void btss(char); - BTFSS f,b

CC7A C Compiler B Knudsen Data

34

clrwdt(); // void clrwdt(void); - CLRWDT
clearRAM(); // void clearRAM(void); clears all RAM
i = decsz(i); // char decsz(char); - DECFSZ f,d
W = incsz(i); // char incsz(char); - INCFSZ f,d
nop(); // void nop(void); - NOP
nop2(); // void nop2(void); - branch (2 cycles)
retint(); // void retint(void); - RETFIE
W = rl(i); // char rl(char); - RLF i,d
i = rr(i); // char rr(char); - RRF i,d
sleep(); // void sleep(void); - SLEEP
skip(i); // void skip(char); - computed goto (single word)
k = swap(k); // char swap(char); - SWAPF k,d
W = addWFC(k);// char addWFC(char); - ADDWFC k,d
i = subFWB(k);// char subFWB(char); - SUBFWB k,d
W = rlnc(i); // char rlnc(char); - RLNCF i,d
i = rrnc(i); // char rrnc(char); - RRNCF i,d
i = decsnz(i);// char decsnz(char); - DCFSNZ f,d
W = incsnz(i);// char incsnz(char); - INFSNZ f,d
b = negate(b);// char negate(char); - NEGF f
W = decadj(W);// char decadj(char); - DAW
multiply(i); // void multiply(char); - MULWF f
multiply(50); // void multiply(char); - MULLW literal
skipIfEQ(a); // void skipIfEQ(char); - CPFSEQ f
skipIfLT(a); // void skipIfLT(char); - CPFSLT f
skipIfGT(a); // void skipIfGT(char); - CPFSGT f
skipIfZero(a);// void skipIfZero(char); - TSTFSZ f
a = readLUInc(void); // char readLUInc(void); - TABLRD 0,1,a
a = readLU(void); // char readLU(void); - TABLRD 0,0,a
a = readHUInc(void); // char readHUInc(void); - TABLRD 1,1,a
a = readHU(void); // char readHU(void); - TABLRD 1,0,a
a = readL(void); // char readL(void); - TLRD 0,a
a = readH(void); // char readH(void); - TLRD 1,a
writeLUInc(char); // void writeLUInc(char); - TABLWT 0,1,a
writeLU(char); // void writeLU(char); - TABLWT 0,0,a
writeHUInc(char); // void writeHUInc(char); - TABLWT 1,1,a
writeHU(char); // void writeHU(char); - TABLWT 1,0,a
writeL(char); // void writeL(char); - TLWT 0,a
writeH(char); // void writeH(char); - TLWT 1,a

The internal rotate functions (rl, rr) are also available for the larger variable sizes:

a16 = rl(a16); // 16 bit left rotation
a32 = rr(a32); // 32 bit right rotation

The inline function nop2() is implemented by a GOTO to the next address. Thus, nop2() can replace two
nop() to get more compact code. The main use of nop() and nop2() is to design exact delays in timing
critical parts of the application.

3.5 Type Cast
Constants and variables of different types can be mixed in expressions. The compiler converts them
automatically to the same type according to the stated rules. For example, the expression:

a = b + c;

consists of 2 separate operations. The first is the plus operation and the second is the assignment. The
type conversion rules are first applied to b+c. The result of the plus operation and a are treated last.

CC7A C Compiler B Knudsen Data

35

The CC7A compiler use 8 bit int size and contains significantly many data types (integers, fixed and
floating point). The type cast rules have been set up to provide best possible compatibility with standard
C compilers (which typically use 16 or 32 bit int size).

The type conversion rules implemented are:
1. if one operand is double -> the other is converted to double
2. if one operand is float -> the other is converted to float
3. if one operand is 32 bit -> the other is converted to 32 bit
4. if one operand is 24 bit -> the other is converted to 24 bit
5. if one operand is long -> the other is converted to long
6. if one operand is unsigned -> the other is converted to unsigned

NOTES:
• The sign is extended before the operand is converted to unsigned.
• Assignment is also an operation.
• Constants are SIGNED, except if U is added.
• The bit type is converted to unsigned char.
• The fixed point types are handled as subtypes of float.

Type conversion in C is difficult. The compiler may generate a warning if a type cast is required to make
the intention clear. Remember that assignment (=) is a separate operation. The separate operations are
marked (1:), (2:) and (3:) in the following examples.

uns16 a16;
uns8 b8, c8;
int8 i8, j8;

a16 = b8 * c8; /* (1:) In this case both b8 and c8 are 8 bit unsigned, so the type of the multiplication is 8
bit unsigned. (2:) The result is then assigned to a 16 bit unsigned variable a16. Converting the 8 bit
unsigned result to 16 bit unsigned means clearing the most significant bits of a16. The compiler generates
a warning because significant bits of the multiplication are lost due to the type conversion rules. */

a16 = (uns16) (b8 * c8); /* (1:) Adding parenthesis just isolate the multiplication and the multiplication
result is still 8 bit unsigned. (2:) The (uns16) type cast is not needed because this type cast is done
automatically before the assignment. The compiler generates a warning because significant bits of the
multiplication are lost due to the type conversion rules. */

a16 = (uns16) b8 * c8; /* (1:) Converting one of the arguments to 16 bit unsigned BEFORE the
multiplication is the right syntax to get a 16 bit result. (2:) The result and the destination a16 now have
the same type for the assignment and no type conversion is needed. */

a16 = (uns8) (b8 * c8); /* (1:) The multiplication result is 8 bit unsigned. (2:) The (uns8) type cast tells
the compiler that the result should be 8 bit unsigned, and no warning is generated even though it looks
like significant bits of the multiplication are lost. */

a16 = b8 * 200; /* (1:) Constant 200 is a 16 bit signed constant (note that 200U is an 8 bit unsigned
constant, and that 127 is the largest 8 bit signed constant). Argument b8 is therefore automatically
converted to 16 bit. The constant is then converted to unsigned and the result is 16 bit unsigned. (2:) The
result and the destination a16 now have the same type for the assignment and no type conversion is
needed. */

a16 = (int16) i8 * j8; /* (1:) Both arguments are converted to 16 bit signed and the result is 16 bit signed.
(2:) The result is converted to unsigned before the assignment, but this does not mean any real change
when the size is the same (example: -1 and 0xFFFF have the same 16 bit representation). */

CC7A C Compiler B Knudsen Data

36

a16 = (uns16) (uns8)i8 * (uns8)j8; /* (1:) To get an 8*8 bit unsigned multiplication it is required to cast
both arguments to unsigned before extending the size to 16 bit unsigned. Otherwise the sign bit will be
extended and the multiplication will need more code and cycles to execute. (2:) The result and the
destination a16 now have the same type for the assignment and no type conversion is needed. */

a16 = ((uns16) b8 * c8) / 3; /* (1:) Converting one of the arguments to 16 bit unsigned before the
multiplication gives a 16 bit result. (2:) Division is the next operation and is using the 16 bit unsigned
multiplication result. Constant 3 is 8 bit signed, and is then automatically converted to 16 bit signed and
further to 16 bit unsigned. The result of the division is 16 bit unsigned. (3:) The division result and the
destination a16 now have the same type for the assignment and no type conversion is needed. */

3.6 Accessing Parts of a Variable
Each bit in a variable can be accessed directly:
uns32 a;
a.7 = 1; // set bit 7 of variable a to 1
if (a.31 == 0) // test bit 31 of variable a

t[i].4 = 0; // bit 4 of the i'th element

Bit 0: least significant bit
Bit 7: most significant bit of a 8 bit variable
Bit 15: most significant bit of a 16 bit variable
Bit 23: most significant bit of a 24 bit variable
Bit 31: most significant bit of a 32 bit variable

Also, parts of a variable can be accessed directly:

uns16 a;
uns32 b;
a.low8 = 100; // set the least significant 8 bits
a = b.high16; // load the most significant 16 bits

low8 : least significant byte
high8 : most significant byte
mid8 : second byte
midL8 : second byte
midH8 : third byte
low16 : least significant 16 bit
mid16 : middle 16 bit
high16: most significant 16 bit
low24 : least significant 24 bit
high24: most significant 24 bit

The table shows which bits are accessed depending on the variable size in bytes (1,2,3,4) and the sub-
index used. The * indicates normal use of the sub-index:

1 2 3 4
------ ------ ------- -------

low8 0-7 * 0-7 * 0-7 * 0-7
high8 0-7 * 8-15 * 16-23 * 24-31
mid8 0-7 8-15 * 8-15 8-15
midL8 0-7 8-15 8-15 * 8-15
midH8 0-7 8-15 16-23 * 16-23
low16 0-7 0-15 * 0-15 * 0-15
mid16 0-7 0-15 8-23 * 8-23
high16 0-7 0-15 * 8-23 * 16-31
low24 0-7 0-15 0-23 * 0-23
high24 0-7 0-15 0-23 * 8-31

CC7A C Compiler B Knudsen Data

37

3.7 C Extensions
CC7A adds some extensions to the standard C syntax:

1. The bit variable type

2. The interrupt function type

3. C++ style comments are allowed :
 // a comment, valid to the end of the line

4. Local variables can be declared between statements as in C++. Standard C requires local variables to
be defined in the beginning of a block.

5. Binary constants : 0bxxxxxx or bin(xxxxxx)
The individual bits can be separated by the '.':
0b0100
0b.0.000.1.01.00000
bin(0100)
bin(0001.0100)

6. Preprocessor statements can be put into macros. Such preprocessor statements are not extended to
multiple lines. The inserted preprocessor statements are evaluated when the macro is expanded, and not
when it is defined.

#define MAX \
{ \

a = 0; \
#if AAA == 0 && BBB == 0 \
b = 0; \

#endif \
}

7. Several of the type modifiers are not standard in C (bank0..bank15, shrBank, size1,size2)

More C extensions are allowed by the #pragma statement.

3.8 Predefined Symbols
The basic PICmicro registers are predefined (header files define the rest):

INDF0, FSR0, PCL, PCLATH, ALUSTA, T0STA, CPUSTA, INTSTA,
INDF1, FSR1, W, WREG, TMR0L, TMR0H, TBLPTR, TBLPTRL, TBLPTRH,
BSR, BSRL, BSRH, PRODH, PRODL, Carry, DC, Zero_, Overflow

The following names are defined as internal functions, and are translated into special instructions or
instruction sequences.

btsc, btss, clearRAM, clrwdt, decsz, incsz, nop, nop2, retint, rl,
rr, sleep, skip, swap, decsnz, incsnz, addWFC, subWFB, rlnc, rrnc,
negate, decadj, multiply, skipIfEQ, skipIfLT, skipIfGT, skipIfZero

Extensions to the standard C keywords
bank0, .. bank15, bit, fixed8_8, .. fixed24_8, float16, float24,
float32, int8, int16, int24, int32, interrupt, page0, .. page7,
shrBank, size1, size2, uns8, uns16, uns24, uns32

CC7A C Compiler B Knudsen Data

38

Standard C keywords used
auto, break, case, char, const, continue, default, double, enum,
extern, do, else, float, for, goto, if, inline, int, long, return,
short, signed, sizeof, static, struct, switch, typedef, union,
unsigned, void, while,
define, elif, ifdef, ifndef, include, endif, error, pragma, undef

The remaining standard C keywords are detected and compiled. One is ignored (register), and the rest
cause a warning to be printed (volatile, line).

The sizeof operator
The operator sizeof() gives the size in bytes of the argument. The argument can be a type name, a variable
name, a pointer, a structure name, an array name, a string literal or a constant. Sizeof can also be used in a
preprosessor statement. Examples: sizeof(char) is 1, sizeof(bit) is 0, sizeof(“abc”) is 4, sizeof(int24) is 3.

Function offsetof(struct_type, struct_member)
Function offsetof() returns the offset to a structure member. The first argument must be a struct type, and
the second a structure member. The function can also be used in a preprocessor expression.
typedef struct sStx {

char a;
uns16 b;

} Stx;
x = offsetof(Stx, b);
x = offsetof(struct sStx, a);
x = offsetof(struct_x, member_n.sub2.q[3]);

Automatically defined macros and symbols
The following symbols are automatically defined when using the CC7A compiler, and can be used in
preprocessor macros:

__CC7A__ := Integer version number: 1000 means version 1.0
* first 2 digits : main version
* last 2 digits : minor release (01=‘A’, 02=‘B’, etc.)

__CoreSet__ := 1742 for PIC17C42 (core 16 a)
1700 for other PIC17 devices (core 17 b)

Macro's __FILE__ and __LINE__
Macro __FILE__ is replaced by the name (string literal) of the current source file. Macro __LINE__ is
replaced by the current line number (decimal constant) of the source file being compiled.

Macro's __DATE__ and __TIME__
Macro's for date and time are defined when compilation starts.
Macro Format Example
__TIME__ HOUR:MIN:SEC "23:59:59"
__DATE__ MONTH DAY YEAR "Jan 1 2009"
__DATE2__ DAY MONTH YEAR " 1 Jan 2009"

3.9 Upward Compatibility
The aim is to provide best possible upward compatibility from version to version. Sometimes the
generated code is improved. If the application programs contain timing critical parts (depends on an exact
instruction count), then these parts should be verified again, for example by using the MSDOS program fc
(file compare) on the generated assembly files.

CC7A C Compiler B Knudsen Data

39

4 PREPROCESSOR DIRECTIVES
The preprocessor recognizes the following keywords:

#define, #undef, #include
#if, #ifdef, #ifndef, #elif, #else, #endif
#error, #warning, #message
#pragma

A preprocessor line can be extended by putting a '\' at the end of the line. This requires that there are no
space characters behind the '\'.

#define
#define counter v1
#define MAX 145
#define echo(x) v2 = x
#define mix() echo(1) /* nested macro */

Note that all #define's are global, even if they are put inside a function.
Preprocessor directives can be put into the #define statement.

Macro concatenation
The concatenation operator ## allows tokens to be merged while expanding macros. Examples:

#define CONCAT(NAME) NAME ## _command()
CONCAT(quit) => quit_command()
CONCAT() => _command()
CONCAT(dummy(); help); => dummy(); help_command()

#define CONCAT2(N1,N2) N1 ## _comm ## N2()
CONCAT2(help, and) => help_command()

#define CONCAT3(NBR) 0x ## NBR
CONCAT3(0f); => 0x0f

#define CONCAT4(TKN) TKN ## =
CONCAT4(+) => +=

#define mrg(s) s ## _msg(s)
#define xmrg(s) mrg(s)
#define foo alt

mrg(foo) => foo_msg(alt)
xmrg(foo) => alt_msg(alt)

#define ILLEGAL1() ## _command
#define ILLEGAL2() _command ##

Macro stringification
The stringification operator # allows a macro argument to be converted into a string constant. Examples:

#define STRINGI1(ARG) #ARG
STRINGI1(help) => "help"
STRINGI1(p="foo\n";) => "p=\"foo\\n\";"

CC7A C Compiler B Knudsen Data

40

#define STRINGI2(A1,A2) #A1 " " #A2
STRINGI2(x,y) => "x" " " "y" (equivalent to "x y")

#define str(s) #s
#define xstr(s) str(s)
#define foo 4

str(foo) => "foo"
xstr(foo) => "4"

#define WARN_IF(EXP) \
do { if (EXP) \

warn("Warning: " #EXP "\n"); } \
while (0)

WARN_IF (x==0); => do { if (x==0)
warn("Warning: " "x==0" "\n"); } while (0);

#include

#include "test.h"
#include <test.h>

#include's can be nested. When using #include "test.h" the current directory is first searched. If the file is
not found there, then the library directories are searched, in the same order as supplied in the command
line option list (-I<dir>). The current directory is skipped when using #include <test.h>.

Macro's can be used in #include files. The following examples show the possibilities. Note that this is not
standard C.

#include "file1" ".h"
#define MAC1 "c:\project\"
#include MAC1 "file2.h"
#define MAC2 MAC1 ".h"
#include MAC2
#define MAC3 <file3.h>
#include MAC3

Rules for macro’s in #include:
1. Strings using "" can be splitted, but not strings using <>
2. Only the first partial string can be a macro
3. Nested macro's is possible
4. Only one makro at each level is possible

#undef
#define MAX 145
..
#undef MAX /* removes definition of MAX */

#undef does the opposite of #define. The #undef statement will not produce any error message if the
symbol is not defined.

CC7A C Compiler B Knudsen Data

41

#if
#if defined ALFA && ALFA == 1

..
/* statements compiled if ALFA is equal to 1 */
/* conditional compilation may be nested */

#endif

An arbitrary complex constant expression can be supplied. The expression is evaluated the same way as a
normal C conditional statement is processed. However, every constant is converted to a 32 bit signed
constant first.

1) macro's are automatically expanded
2) defined(SYMBOL)and defined SYMBOL are replaced by 1 if the symbol

is defined, otherwise 0.
3) legal constants : 1234 -1 'a' '\\'
4) legal operations : + - * / % >> <<

== != < <= > >= || &&
! ~ ()

#ifdef
#ifdef SYMBOL

..
/* Statements compiled if SYMBOL is defined.

Conditional compilation can be nested. SYMBOL
should not be a variable or a function name. */

#endif

#ifndef
#ifndef SYMBOL

/* statements compiled if SYMBOL is not defined */
#endif

#elif
#ifdef AX

..
#elif defined BX || defined CX

/* statements compiled if AX is not
defined, and BX or CX is defined */

#endif

#else
#ifdef SYMBOL

..
#else

/* statements compiled if SYMBOL is not defined */
#endif

#endif
#ifdef SYMBOL

..
#endif /* end of conditional statements */

CC7A C Compiler B Knudsen Data

42

#error
#error This is a custom defined error message

The compiler generates an error message using the text found behind #error.

#warning
#warning This is a warning

The following output is produced. Note that this directive is not standard C.
Warning test.c 7: This is a warning

#message
#message This is message 1

The following output is produced. Note that this directive is not standard C.
Message: This is message 1

4.1 The pragma Statement
The pragma statement is used for processor specific implementations.

#pragma alignLsbOrigin <a> [to]
This pragma statement allows the origin to be aligned. The compiler will check if the least significant
byte of the origin address is equal to <a>, or alternatively within the range <a> to . If this is not true,
the origin is incremented until the condition becomes true. Both <a> and may range from -254 to
254, and should be even numbers.

#pragma alignLsbOrigin 0
#pragma alignLsbOrigin 6 to 100
#pragma alignLsbOrigin 0 to 190 // [-254 .. 254]
#pragma alignLsbOrigin -100 to 10

Such alignment is useful to make sure that a computed goto does not cross a 256 byte address boundary.
More details are found in Section Origin alignment on page 86 in Chapter 9.1 Computed Goto.

#pragma asm2var 1
Enable equ to variable transformation. This is defined in Chapter 6.6 Inline Assembly on page 67.

#pragma assert [/] <type> <text field>
Assert statements allow messages to be passed to the simulator, emulator, etc. Refer to Chapter 7.3 Assert
Statements on page 79 for details.

#pragma assume *<pointer> in rambank <n>
The #pragma assume statement tells the compiler that a 8 bit RAM pointer operates in a limited address
range. Refer to Chapter 2.4 Pointers on page 23 for details.

#pragma assume *p in rambank 3

#pragma bit <name> @ <N.B or variable[.B]>
Defines the global bit variable <name>. It is useful for assigning a bit variable to a certain address. Only
valid addresses are allowed:

#pragma bit bitxx @ 0x20.7

CC7A C Compiler B Knudsen Data

43

#pragma bit rx @ FSR0.1
#pragma bit C_bit @ Carry

NOTE: If the compiler detects double assignments to the same RAM location, this will cause a warning
to be printed. The warning can be avoided if the second assignment uses the variable name from the first
assignment instead of the address (#pragma bit var2 @ var1).

#pragma cdata[ADDRESS] = <VXS>, .., <VXS>
The cdata statement can store 16 bit data in program memory at fixed addresses. Refer to Chapter 6.9 The
cdata Statement on page 74 for details.

#pragma cdata[ADDRESS] = <VXS>, .., <VXS>
#pragma cdata[] = <VXS>, .., <VXS>
#pragma cdata.IDENTIFIER = <VXS>, .., <VXS>

ADDRESS: 16 bit word address
VXS : < VALUE | EXPRESSION | STRING>
VALUE: 0 .. 0xFFFF
EXPRESSION: any valid C constant expression,

i.e. 0x1000 | (3*1234)
STRING: "Valid C String\r\n\0\x24\x8\xe\xFF\xff\\\""

#pragma char <name> @ <constant or variable>
Defines the global variable <name>. The statement is useful for assigning a variable to a certain address.
Only valid addresses are allowed:

#pragma char i @ 0x20
#pragma char PORTX @ PORTC

NOTE: If the compiler detects double assignments to the same RAM location, this will cause a warning
to be printed. The warning can be avoided if the second assignment uses the variable name from the first
assignment instead of the address (#pragma char var2 @ var1).

#pragma chip [=] <device>
Defines the chip type. This allows the compiler to select the right boundaries for code and memory size,
variable names, etc. Note that the chip type can also be defined as a command line option.

#pragma chip PIC17C42

This statement have to proceed any normal C statements, but some preprocessor statements, like #if and
#define, can be compiled first.

The supported devices are defined in a PICmicro header file (i.e. ‘17C42.h’). It is also possible to make
new header files. Refer to file ‘chip.txt’ for details.

#pragma computedGoto [=] <0,1>
This statement can be used when constructing complicated computed goto's. Refer to Chapter 9.1
Computed Goto on page 85 for details.

#pragma computedGoto 1 // start region
#pragma computedGoto 0 // end of region

CC7A C Compiler B Knudsen Data

44

#pragma config [<offset>] = <expression>
This statement allows PICmicro configuration information to be put in the generated hex and assembly
file.

#pragma config[<offset>] = <expression>

Examples:
#pragma config[0] = 0 // FOSC0 = 0
#pragma config[1] = 0 // FOSC1 = 0
//#pragma config[2] = 1 // WDTPS0 unprogrammed (=1)
//#pragma config[3] = 1 // WDTPS1 unprogrammed (=1)

Refer to Chapter 4.2 PICmicro Configuration on page 47 for more details.

#pragma inlineMath <0,1>
The compiler can be instructed to generate inline integer math code after a math library is included.

#pragma inlineMath 1
a = b * c; // inline integer code is always generated

#pragma inlineMath 0

#pragma insertConst
The compiler will normally insert 'const' data at the end of the user code (high address). The following
pragma statement will allow the 'const' data to be inserted between two user functions, or at a specific
address (if using #pragma origin first):

#pragma insertConst

#pragma interruptSaveCheck <n,w,e>
The compiler will automatically check that vital registers are saved and restored during interrupt. Please
refer to Chapter 6.3 Interrupts on page 55 for details (or file ‘int17xxx.h’). The error and warning
messages can be removed:

#pragma interruptSaveCheck n // no warning or error
#pragma interruptSaveCheck w // warning only
#pragma interruptSaveCheck e // error and warning (default)

#pragma library <0/1>
CC7A will automatically delete unused (library) functions.

#pragma library 1
// functions that are deleted if unused
// applies to prototypes and function definitions

#pragma library 0

#pragma mainStack <minVarSize> @ <lowestStartAddr>
This statement defines a main stack for local variables, parameters and temporary variables. The main
stack is not an additional stack, but tells the compiler where the main stack is located (which bank). The
main stack can cross bank boundaries if necessary. Only variables above or equal to <minVarSize> will
automatically be put in the main stack. The <lowestStartAddr> is the lowest possible start address for the
main stack (the stack grows upwards).

#pragma mainStack 3 @ 0x110

CC7A C Compiler B Knudsen Data

45

Using this pragma means that local variables, parameters and temporary variables of size 3 bytes and
larger (including tables and structures) will be stored in a single stack allocated no lower than address
0x110. Smaller variables and variables with a bank modifier will be stored according to the default/other
rules. Using size 0 means all variables including bit variables.

Note that #pragma rambank is ignored for variables stored in the main stack. Addresses ranging from
0x100 to 0x1FF are equivalent to the bank1 type modifier, although the actual bank will be different after
stack allocation for some variables if the main stack crosses a bank boundary.

#pragma minorStack <maxVarSize> @ <lowestStartAddr>
This statement defines a minor stack for local variables, parameters and temporary variables. One reason
for defining a minor stack is that it may be efficient to use unbanked locations or a specific bank for local
variables up to a certain size. Only variables below or equal to <maxVarSize> will automatically be put
in the minor stack. The <lowestStartAddr> is the lowest possible start address for the minor stack (the
stack grows upwards).

#pragma minorStack 1 @ 0x18

In this case, local variables, parameters and temporary variables up to 1 byte will be put in unbanked
locations from address 0x18 to 0x1F. Larger variables and variables with a bank modifier will be stored
according to the default/other rules. Using size 0 means bit variables only. This pragma can be used in
combination with the main stack. The variable size defined by the minor stack has priority over the main
stack.

#pragma optimize [=] [N:] <0,1>
This statement enables optimization to be switched ON or OFF in a local region. A specific type of
optimization can also be switched on or off. The default setting is on.

1. redirect goto to goto.
2. remove superfluous gotos.
3. replace goto by skip instructions.
4. remove instructions that affects the zero-flag only.
5. replace INCF and DECF by INCFSZ and DECFSZ.
6. remove superfluous updating of PA0 and PA1.
7. remove other superfluous instructions.
8. remove superfluous loading of W.
9. to be defined.
10. inserts TSTFSZ, CPFSEQ.

Examples:
#pragma optimize 0 /* ALL off */
#pragma optimize 1 /* ALL on */
#pragma optimize 2:1 /* type 2 on */
#pragma optimize 1:0 /* type 1 off */

/* combinations are also possible */
#pragma optimize 3:0, 4:0, 5:1
#pragma optimize 1, 1:0, 2:0, 3:0

NOTE: The command line option -u will switch optimization off globally, which means that all settings
in the source code are ignored.

#pragma origin [=] <expression>
Valid byte address region : 0x0000 - <upper device byte code address>

CC7A C Compiler B Knudsen Data

46

The statement defines the byte address of the following code. The current active location can not be
moved backwards, even if there is no code in that area. Origin can not be changed inside a function.

#pragma origin 8 // high priority interrupt start address
#pragma origin 0x700 + 2

#pragma rambank [=] <-,0,1,2,..,15>
- => unbanked: 0x018/0x1A – 0x01F
0 => bank 0: 0x020 – 0x0FF
1 => bank 1: 0x120 – 0x1FF
2 => bank 2: 0x220 – 0x2FF
..
15 => bank 15: 0xF20 – 0xF7F

#pragma rambank defines the region where the compiler will allocate variable space. The compiler gives
an error message when all locations in the current bank are allocated.

RAM banks are only valid for some of the devices. Non-existing banks for the other devices are mapped
into bank 0.

#pragma rambase [=] <n>
Defines the start address when declaring global variables. The use of rambank and rambase are very
similar. The address has to be within the RAM space of the chip used. NOTE that the start address is not
valid for local variables, but rambase can be used to select a specific RAM-bank.

#pragma resetVector <n>
Some chips have an unusual startup vector location. The reset-vector then has to be specified. This
statement is normally NOT required, because the compiler normally use the default location, which is the
first location. It is possible to locate main() in any codepage when not using a reset-vector.

#pragma resetVector 0 // at byte address 0
#pragma resetVector 10 // at byte address 10
#pragma resetVector - // NO reset-vector

#pragma return[<n>] = <strings or constants>
Allows multiple return statements to be inserted. This statement should be proceeded by the skip()
statement. The compiler may otherwise remove most returns. The constant <n> is optional, but it allows
the compiler to print a warning when the number of constants is not equal to <n>. Refer to Chapter 9.1
Computed Goto on page 85 for more details. Note that ‘const’ data types should normally be used for
constant data.

skip(W);
#define NoH 11
#pragma return[NoH] = "Hello world"
#pragma return[5] = 1, 4, 5, 6, 7
#pragma return[] = 0 1 2 3 44 'H' \

"Hello" 2 3 4 0x44
#pragma return[]= 'H' 'e' 'l' 'l' 'o'
#pragma return[3] = 0b010110 \

0b111 0x10
#pragma return[9] = "a \" \r\n\0"
#pragma return[] = (10+10*2), (0x80+'E') "nd"
#pragma return[] = 10000 : 16 /* 16 bit constant */ \

CC7A C Compiler B Knudsen Data

47

0x123456 : 24 /* 24 bit constant */ \
(10000 * 10000) : 32 /* 32 bit constant */

#pragma sharedAllocation
This pragma allow functions containing local variables and parameters to be shared between independent
call trees (interrupt and the main program). However, when doing this there will be a risk of overwriting
these shared variables unless special care is taken. Further description is found in Section “Functions
shared between independent call trees” in Chapter 6.2 Subroutine Call Level Checking.

#pragma stackLevels <n>
The number of call levels can be defined (normally not required). PIC17 uses by default 16 levels.

#pragma stackLevels 14 // max 64

#pragma unlockISR
The interrupt routines normally have to reside on address 0x8/0x10/0x18/0x20. The following pragma
statement will allow the interrupt routine to be placed anywhere. Note that the compiler will NOT
generate the link from address 0x8/0x10/0x18/0x20 to the interrupt routine.

#pragma unlockISR

#pragma updateBank [entry | exit | default] [=] <0,1>
The main usage of #pragma updateBank is to allow the automatic updating of the bank selection register
to be switched on and off locally. These statements can also be inserted outside the functions, but they
should surround a region as small as possible

#pragma updateBank 0 /* OFF */
#pragma updateBank 1 /* ON */

Another use of #pragma updateBank is to instruct the bank update algorithm to do certain selections.
These statements can only be used inside the functions:

#pragma updateBank entry = 0
/* The 'entry' bank force the bank bits to be set

to a certain value when calling this function */

#pragma updateBank exit = 1
/* The 'exit' bank force the bank bits to be set

to a certain value at return from this function */

#pragma updateBank default = 0
/* The 'default' bank is used by the compiler at

loops and labels when the algorithm gives up
finding the optimal choice */

#pragma versionFile [<file>]
Allows a version number at the end of the include file to be incremented for each compilation. The use of
this statement is defined in Chapter 5.2 Automatic incrementing version number in a file on page 52.

4.2 PICmicro Configuration
PIC17 configuration information can be put in the generated hex and assembly file. The configuration
information is generated IF AND ONLY IF the #pragma config statement is included.

CC7A C Compiler B Knudsen Data

48

The PIC17 devices has several configuration locations. Each locations allow one bit to be programmed
(read as '0') or left unprogrammed (read as '1') to select various device configurations. Any write to a
configuration location, regardless of the data, will program that configuration bit.

Syntax:
#pragma config[<offset>] = <expression>

Examples:
#pragma config[0] = 0 // FOSC0 = 0
#pragma config[1] = 0 // FOSC1 = 0
//#pragma config[2] = 1 // WDTPS0 unprogrammed (=1)
//#pragma config[3] = 1 // WDTPS1 unprogrammed (=1)
#pragma config[4] = 0 // PM0 = 0
#pragma config[5] = 0 // PM1 = 0
//#pragma config[14] = 1 // BODEN unprogrammed (=1)
#pragma config[15] = 0 // PM2 = 0

// Device specific definitions (PIC17C7XX devices)
#define CONFIG_FOSC0_1 //leave unprogrammed // FOSC0 = 1
#define CONFIG_FOSC0_0 #pragma config[0] = 0 // FOSC0 = 0
#define CONFIG_FOSC1_1 //leave unprogrammed // FOSC1 = 1
#define CONFIG_FOSC1_0 #pragma config[1] = 0 // FOSC1 = 0
#define CONFIG_WDTPS0_1 //leave unprogrammed // WDTPS0 = 1
#define CONFIG_WDTPS0_0 #pragma config[2] = 0 // WDTPS0 = 0
#define CONFIG_WDTPS1_1 //leave unprogrammed // WDTPS1 = 1
#define CONFIG_WDTPS1_0 #pragma config[3] = 0 // WDTPS1 = 0
#define CONFIG_PM0_1 //leave unprogrammed // PM0 = 1
#define CONFIG_PM0_0 #pragma config[4] = 0 // PM0 = 0
#define CONFIG_PM1_1 //leave unprogrammed // PM1 = 1
#define CONFIG_PM1_0 #pragma config[5] = 0 // PM1 = 0
#define CONFIG_BODEN_1 //leave unprogrammed // BODEN = 1
#define CONFIG_BODEN_0 #pragma config[14] = 0 // BODEN = 0
#define CONFIG_PM2_1 //leave unprogrammed // PM2 = 1
#define CONFIG_PM2_0 #pragma config[15] = 0 // PM2 = 0

// Actual configuration
// XT oscillator
CONFIG_FOSC0_0
CONFIG_FOSC1_1
// WDT enabled, postscaler = 256
CONFIG_WDTPS0_0
CONFIG_WDTPS1_1
// 110 = Microcontroller mode
CONFIG_PM0_0
CONFIG_PM1_1
CONFIG_PM2_1
// Brown-out Detect circuitry is enabled
CONFIG_BODEN_1

It is also possible to define the CONFIG locations by using #pragma cdata statements.

CONFIG word start address:
 PIC17 : 0xFE00

CC7A C Compiler B Knudsen Data

49

5 COMMAND LINE OPTIONS
The compiler needs a C source file name to start compiling. Other arguments can be added if required.
The syntax is:

CC7A [options] <src>.c [options]

-a[<asmfile>] : produce assembly file.
The default file name is <src>.asm

-A[scHDftumiJRN+N+N] : assembly file options
s: symbolic arguments are replaced by numbers
c: no C source code is printed
H: hexadecimal numbers only
D: decimal numbers only
f: no object format directive is printed
t: no tabulators, normal spaces only
u: no extra info at the end of the assembly file
m: single source line only
i: no source indentation, straight left margin
J: put source after instructions to achieve a compact assembly file.
R: detailed macro expansion
N+N+N: label, mnemonic and argument spacing. Default is 8+6+10.

-b : do not update bank selection bits (BSR register)
-bu : non-optimized updating of the bank selection bits

-B[pims] : write output from preprocessor to <src>.cpr
p : partial preprocessing
i : no include files
m: modify symbols
s : modify strings

-CC[<file>] : produce COD file, C mode
-CA[<file>] : produce COD file, ASM mode

-cd : allow cdata outside program space (warning only)
-cfc : use old format on config and idlocs in generated assembly file
-cu : use 32 bit evaluation of constant expressions
-cxc : do not search current directory for include files

-dc : do not write compiler output file <src>.occ

-D<name>[<token>xxx] : define macro. Equivalent to #define name xxx

-e : single line error messages (no source lines are printed).
-ed : do not print error details
-ew : do not print warning details
-eL : list error and warning details at the end
-E<N> : stop after <N> errors (default is 4).

-f<hex-file-format> : i.e. INHX8M, INHX8S, INHX16, INHX32. Default is INHX32. Note that
INHX8S use output files: <file>.HXH and <file>.HXL

-F : produce error file <src>.err

CC7A C Compiler B Knudsen Data

50

-FM : MPLAB compatible error format

-g : do not replace call by goto

-GW : dynamic selected skip() format, warning on long format
-GD : dynamic selected skip() format (default)
-GS : always short skip() format (error if 256 byte boundary is crossed)
-GL : always long skip() format

-I<directory> : include files directory/folder. Up to 5 library directories can be supplied by using
separate -I<dir> options. When using #include "test.h" the current directory is first searched. If the file is
not found there, then the library directories are searched, in the same order as supplied in the command
line option list (-I<dir>). The current directory is skipped when using #include <test.h>.

-li<ENVI> : include directory from environment variable (default CCINC)
-lh<ENVD> : load default directory from environment variable (default CCHOME)

-L[<col>,<lin>] : produce list file <src>.lst
The maximun number of columns per line <col> and lines per page <lin> can be changed. The default
setting is -L80,60

-mc1 : default 'const' pointer size is 1 byte (8 bits)
-mc2 : default 'const' pointer size is 2 bytes (16 bits)
-mr1 : default RAM pointer size is 1 byte
-mr2 : default RAM pointer size is 2 bytes
-mm1 : default pointer size is 1 byte (all pointer types)
-mm2 : default pointer size is 2 bytes (all pointer types)

-Ma : truncate all automatic generated labels in the assembly/list files

-o<name> : write hex file to name

-O<directory> : output files directory. Files generated by the compiler are put on this directory, except
when a full path name is supplied.

-p<device> : defines the chip type (i.e. –pPIC17C42 or –p17C42). The device has to be supported by a
header file (i.e. 17C42.H). No default device is available.

-p- : clear any preceding -p<chip> to allow chip redefinition

-q<N> : assume disabled interrupt at the <N> deepest call levels. For example, –q1 allows the main
program to use all stack levels for function calls. Disabling interrupt at the deepest call level MUST then
be properly ensured in the user application program.

-Q : write the call tree to <src>.fcs.

-S : silent operation of the compiler

-u : no optimizing

-V[rnuD] : generate variable file, <src>.var, sorted by address as default.
r: only variables which are referenced in the code
n: sort by name
u: unsorted
D: decimal numbers

CC7A C Compiler B Knudsen Data

51

-wC : warning on upward compatibility issues
-we : no warning when fixed point constants are rounded
-wi : no warning on multiple inline math integer operations
-wm : no warning on single call to math integer function
-wO : warning on operator library calls
-wr : no warning on recursive calls
-wS : warning (no error) when constant expression loses significant bits
-wU : warning on uncalled functions

-W : wait until key pressed after compilation

-x<file> : assembler executable: -x"C:\Program Files\Microchip\MPASM Suite\mpasmwin.exe"
-X<option> : assembler option: -X/q (all options must be separate)

-zZ : optimize (inline multiplication) for size
-zD : optimize (inline multiplication) for speed (default)

Doublequotes " " allows spaces in the option:
-I"C:\Program Files\cc7a"

A path name can be written using '/' if this is supported by the file system, example:
c:/compiler/lib/file.h

Default compiler settings:
• hex file output to file <name>.hex
• optimizing on
• extended call level is allowed
• update bank selection bits

Permanent assigned settings:
• nested comments is allowed
• char is unsigned

5.1 Options in a file
Options can be put in a file. The syntax is:

cc7a [..] +<filename> [..]

Many option files can be included, and up to 5 levels of nested include files are allowed. Options in a file
allow an unlimited number of options to be stated. Linefeed, space and TAB separates each option.
Comments can be added in the option file using the syntax:
// the rest of the line is a comment

Spaces can be added to each option if a space is added behind the '-' starting the option. This syntax
disables using more than one option on each line. Examples:
- D MAC = 1 + OP
- p 17C42 // comment
-p 17C42 // this will not work
- p 17C42 -a // not this either

Note that the file path is required if the file does not reside on the current directory.

String translation rules for options in a file:
1. Doublequotes " " allows spaces in the option, quotes are removed
2. Using \" means a single quote " in an option

CC7A C Compiler B Knudsen Data

52

-I"C:\Program Files\cc7a" ==> -IC:\Program Files\cc7a
-IC:"\Program Files"\cc7a ==> -IC:\Program Files\cc7a

-DMyString="\"Hello\n\"" ==> -DMyString="Hello\n"
-DQuote='\\"' ==> -DQuote='\"'

5.2 Automatic incrementing version number in a file
The compiler is able to automatically increment one or more version numbers for each compilation.
Three different syntax alternatives are available.

1. Option : -ver#verfile.c
#include "verfile.c" // or <verfile.c>

2. Option : -ver
#pragma versionFile // next include is version file
#include "verfile.c" // or <verfile.c>

3. Option : -ver
#pragma versionFile "verfile.c" // or <verfile.c>

Note that the command line option is required to make this increment happen. It is the decimal number
found at end of the included file that is incremented. The updated file is written back before the file is
compiled. No special syntax is assumed in the version file. Suggestions:

#define MY_VERSION 20
#define VER_STRING "1.02.0005"
/* VERSION : 01110 */

If the decimal number is 99, then the new number will be 100 and the file length increases by 1. If the
number is 099, then the file length remains the same. A version file should not be too large (up to 20k),
otherwise an error is printed.

Formats 2 and 3 above allows more than one version file. It is recommended to use conditional
compilation to manage several editions of the same program.

5.3 Environment Variables
Environment variables can be used to define include folders and primary folder:

Variable CCINC is an alternative to the -I<path> option. The compiler will only read this variable (or
specified variable) when using the following command line option:

-li : read default environment variable CCINC
-li<ENVI> : read specific environment variable

Variable CCHOME can be used to define the primary folder during compilation. The compiler will only
read this variable (or specified variable) when using the following command line option:

-lh : read default environment variable CCHOME
-lh<ENVP> : read specific environment variable

CC7A C Compiler B Knudsen Data

53

6 PROGRAM CODE

6.1 Program Code Pages
The PIC17 series may have up to 8 code pages each having 8k words of code. Using more than one code
page requires page selection. For example, all functions following a #pragma codepage statement are put
on the page specified. Codepage 0 is used as default.

/* functions proceeding the first codepage statement are placed on
codepage 0 */

#pragma codepage 2

char fx(void) { .. }
/* this function is placed on codepage 2 */

#pragma codepage 1

/* following functions are placed on codepage 1 */

When switching between codepages, the compiler will keep track on the next free location on each
codepage. Use of codepages is just a matter of optimization, as long as the compiler accepts the selection.
The optimal combination requires least code (or has a speed advantage). The optimizer removes
unnecessary setting and clearing of the page selection bits.

Swithcing between code pages requires 1 or 2 instructions. The compiler will insert the required
instructions automatically.

The compiler produces an error message when page limits are exceeded. Invalid code pages are mapped
to valid ones.

Another way of locating functions
The statement #pragma location is capable of locating prototypes on codepages as well as function
definitions. The statement is useful when locating functions defined in library files, or when locating
functions in large programs. Its normal use is in limited regions in header files. The rules when using
#pragma location are:

1. A function prototype will locate the function on the desired codepage, even if the current active
codepage is different when the function definition is compiled.

2. #pragma location has higher priority than #pragma codepage.
3. '#pragma location -' restores the active codepage defined by the last #pragma codepage (or #pragma

origin).

#pragma location 1 // codepage 1
void f1(void); // assigned to codepage 1
void f2(void);
void f3(void);

#pragma location 3 // codepage 3
void f4(void);

#pragma location - // return to the active codepage
void f5(void); // this prototype is not located

CC7A C Compiler B Knudsen Data

54

Notes:
1. The location statements have to be compiled before the function definition
2. Functions not located are placed on the current active codepage
3. A warning is printed in case of conflicts

The #pragma location statement should only be used if required. An example is when functions inside a
module (file) have to be placed on different codepages, or if much tuning is required to find the optimal
combination. The #pragma codepage statement is normally sufficient.

The page type modifier
The page type modifiers page0..page7 can replace #pragma location/codepage.

page2 void fx(void) { .. } // in codepage 2
page1 char f2(char a); // in codepage 1

The page type modifier defines the codepage to locate the function in, both for function prototypes and
function definitions.

NOTE 1: The page type modifier has higher priority than both #pragma codepage and #pragma location

NOTE 2: When the codepage have been defined using the page type modifier or #pragma location, then
the location is fixed and can not be changed in the function definition or by using a second prototype.

Invalid code pages are mapped to valid ones.

Page selection bits
The page selection bits (3 bits iin PCLATH) are automatically updated by the compiler, and attempts to
set or clear these bits in the source code are removed by the optimizer. This can be switched off by the -j
command line option.

6.2 Subroutine Call Level Checking
Subroutine calls are limited to 16 levels for the PIC17 devices. The compiler automatically checks that
this limit is not exceeded.

The compiler can replace CALL by GOTO to seemingly achieve deeper call levels.

1. When a function is called once only, the CALL can be replaced by a GOTO. All corresponding
returns are replaced by GOTO. Note that the call will only be replaced by GOTO when the call level
must be reduced. Also, the CALL is NOT replaced by GOTO when:
a) The program counter (PCL) is manipulated in the user code (computed goto) in a function of

type char.
b) The number of return literal exceeds 10

2. Call followed by return is replaced by a single goto.

Stack level checking when using interrupt
CC7A will normally assume that an interrupt can occur anywhere in the main program, also at the
deepest call level. An error message is printed if stack overflow may occur. This is not always true,
because the interrupt enable bits controls when interrupts are allowed. Sometimes the main program
needs all 31 stack levels for making calls.

The -q<N> option force CC7A to assume that interrupt will NOT occur at the <N> deepest call levels of
the main program.

CC7A C Compiler B Knudsen Data

55

The application writer must then ensure that interrupt will not occur when executing functions at the
deepest <N> call levels, normally by using the global interrupt enable bit. CC7A will generate a warning
for the critical functions. (The normal error message is always generated when the application contains
more than 31 call levels.)

For example, the -q1 option generates a warning for functions calls that will put the return address at
stack level 31 (no free stack entry for interrupt). Using -q2 means an additional warning at stack level 30
if the interrupt routine requires 2 levels, i.e. contains function calls.

It is NOT recommended to use the -q<N> as a default option.

Functions shared between independent call trees
An error message is normally printed when the compiler detects functions that are called both from
main() and during interrupt processing if this function contains local variables or parameters. This also
applies to math library calls and const access functions. The reason for the error is that local variables are
allocated statically and may be overwritten if the routine is interrupted and then called during interrupt
processing.

The error message will be changed to a warning by the following pragma statement. Note that this means
that local variable and parameter overwriting must be avoided by careful code writing.

#pragma sharedAllocation

Recursive functions
Recursive functions are possible. Please note that the termination condition have to be defined in the
application code, and therefore the call level checking can not be done by the compiler. Also note that the
compiler does not allow any local variables in recursive functions. Function parameters and local
variables can be handled by writing code that emulates a stack.

A warning is printed when the compiler detects a function that which call itself directly or through
another function. This warning can be switched off with the -wr command line option.

6.3 Interrupts
The PIC17 devices allow both low priority and high priority interrupts.

The structure of the interrupt service routine is as follows:

#include "int17XXX.h"

#pragma origin 0x8

interrupt iServer(void)
{

multi_interrupt_entry_and_save

PERIPHERAL_service:
// save on demand: PRODL,PRODH,TBLPTRH,TBLPTRL,FSR0,FSR1
// the right peripheral interrupt flag must be cleared manually
/* process periferal interrupt */
if (RC1IF) {

RC1IF = 0; // application code to be inserted here
}
if (TX1IF) {

TX1IF = 0; // application code to be inserted here
}

CC7A C Compiler B Knudsen Data

56

if (CA1IF) {
CA1IF = 0; // application code to be inserted here

}
if (CA2IF) {

CA2IF = 0; // application code to be inserted here
}
if (TMR1IF) {

TMR1IF = 0; // application code to be inserted here
}
if (TMR2IF) {

TMR2IF = 0; // application code to be inserted here
}
if (TMR3IF) {

TMR3IF = 0; // application code to be inserted here
}
if (RBIF) {

RBIF = 0; // application code to be inserted here
}

// restore on demand: PRODL,PRODH,TBLPTRH,TBLPTRL,FSR0,FSR1
goto RESTORE_and_return;

TMR0_service:
// save on demand: PRODL,PRODH,TBLPTRH,TBLPTRL,FSR0,FSR1

/* process Timer 0 interrupt */
// T0IF is automatically cleared when the CPU vectors to 0x10
// application code to be inserted here

// restore on demand: PRODL,PRODH,TBLPTRH,TBLPTRL,FSR0,FSR1

goto RESTORE_and_return;

T0CKI_service:
// save on demand: PRODL,PRODH,TBLPTRH,TBLPTRL,FSR0,FSR1

/* process T0CKI pin interrupt */
// T0CKIF is automatically cleared when the CPU vectors to 0x18
// application code to be inserted here

// restore on demand: PRODL,PRODH,TBLPTRH,TBLPTRL,FSR0,FSR1

goto RESTORE_and_return;

INT_service:
// save on demand: PRODL,PRODH,TBLPTRH,TBLPTRL,FSR0,FSR1

/* process INT pin interrupt */
// INTF is automatically cleared when the CPU vectors to 0x8
// application code to be inserted here

// restore on demand: PRODL,PRODH,TBLPTRH,TBLPTRL,FSR0,FSR1

CC7A C Compiler B Knudsen Data

57

RESTORE_and_return:

interrupt_exit_and_restore
}

The keyword interrupt allows the routine to be terminated by a RETFIE instruction. It is possible to call a
function from the interrupt routine (it has to be defined by a prototype function definition first).

The interrupt routine requires at least one free stack location because the return address is pushed on the
stack. This is automatically checked by the compiler, even function calls from the interrupt routine.
However, if the program contains recursive functions, then the call level can not be checked by the
compiler.

The interrupt vector is permanently set to address 0x8/0x10/0x18/0x20. The interrupt service routines can
only be located at these addresses. The #pragma origin statement has to be used in order to skip unused
program locations.

The following pragma statement will allow the interrupt routine to be placed anywhere. Note that the
compiler will NOT generate the link from address 0x8/0x10/0x18/0x20 to the interrupt routine.

#pragma unlockISR

Vital registers such as W/WREG, ALUSTA, PCLATH and BSR should be saved and restored by the
interrupt routine. However, registers that are not modified by the interrupt routine do not have to be
saved. The file ‘int17xxx.h’ contains recommended program sequences for saving and restoring registers.
Other registers must be saved manually. The interrupt routine can also contain local variables. Storage for
local variables is allocated separately because interrupts can occur anytime.

IMPORTANT: CC7A will AUTOMATICALLY check that vital registers are saved and restored during
interrupt. This applies to:

Group 1: W/WREG, ALUSTA, PCLATH, BSR : most frequent used
Group 2: FSR0, FSR1 : indirect access
Group 3: TBLPTR : reading 'const' data
Group 4: PRODL, PRODH : multiplication instructions

NOTE that it is not required to save registers before starting to service the interrupt. Section Custom
interrupt save and restore on page 58, shows a list of instructions that that will not disturb the main
registers.

It is normally not required to save PCLATH on devices using one code page only (max 8192 words of
code). However, PCLATH must be saved if computed goto is used in both the main() routine and
interrupt.

It is possible to limit the save and restore of a specific register to a small region inside the interrupt
service routine, if this register is modified only inside this region.

CC7A supports CUSTOM save and restore sequences. If you want to use your own register save and
restore during interrupt, please read the following Section Custom interrupt save and restore.

The compiler will detect if the initially mentioned registers are modified during interrupt processing
without being saved and restored. The supplied macros for saving and restoring registers will only save
W/WREG, ALUSTA, PCLATH and BSR. The other registers have to be saved and restored by user code
when needed.

CC7A C Compiler B Knudsen Data

58

For example, if FSR0 is modified by a table or pointer access, or by direct writing, the compiler will
check that FSR0 is saved and restored, also in nested function calls. Note that the FSR0 saving and
restoring can be done in a local region surrounding the indexed access, and does not need to be done in
the beginning and end of the interrupt routine.

A warning is printed if the Group 2 - 4 registers mentioned above are saved but not changed. The error
and warning messages printed can be removed:

#pragma interruptSaveCheck n // no warning or error
#pragma interruptSaveCheck w // warning only
#pragma interruptSaveCheck e // error and warning (default)

 Note that the above pragma changes the checking done on all registers.

Custom interrupt save and restore
It is not required to use the above save and restore macros. CC7A also supports custom interrupt
structures.

A) You may want to use your own save and restore sequence. This can be done by inline assembly. If
CC7A does not accept your code, just insert (on your own risk):

#pragma interruptSaveCheck n // no warning or error

B) No registers need to be saved when using the following instructions in the interrupt routine. The
register save checking should NOT be disabled.

bx2 = 1; // BSF 0x1F,bx2 ; unbanked locations only
bx1 = 0; // BCF 0x1F,bx1 ; unbanked locations only
bx3 = !bx3; // BTG 0x1F,bx3 ; unbanked locations only
btss(bx1); // BTFSS 0x1F,bx1 ; unbanked locations only
btsc(bx1); // BTFSC 0x1F,bx1 ; unbanked locations only
vs = swap(vs); // SWAPF vs,1 ; unbanked locations only
vs = incsz(vs); // INCFSZ vs,1 ; unbanked locations only
vs = decsz(vs); // DECFSZ vs,1 ; unbanked locations only
vs = incsnz(vs);// INFSNZ vs,1 ; unbanked locations only
vs = decsnz(vs);// DCFSNZ vs,1 ; unbanked locations only
a = b; // MOVFP a,b ; unbanked locations only
a = 0; // CLRF a,1 ; unbanked locations only
a = 0xFF; // SETF a,1 ; unbanked locations only
vs = rrnc(vs); // RRNC vs,1 ; unbanked locations only
vs = rlnc(vs); // RRNC vs,1 ; unbanked locations only
skipIfZero(vs); // TSTFSZ vs ; unbanked locations only
nop(); // NOP
clrwdt(); // CLRWDT

C) It is possible to enable interrupt only in special regions (wait loops) in such a way that main registers
can be modified during interrupt without disturbing the main program. The register save can then be
omitted and the save checking must be switched off to avoid the error messages:

#pragma interruptSaveCheck n // no warning or error

INTERRUPTS CAN BE VERY DIFFICULT. THE PITFALLS ARE MANY.

CC7A C Compiler B Knudsen Data

59

6.4 Startup and Termination Code
The startup code consists of a jump to main(). No variables are initiated. All initialization has to be done
by user code. This simplifies design when using the watchdog timer or MCLR pin for wakeup purposes.

It is possible to locate main() in any codepage if the reset vector is omitted. This is done by the following
pragma statement. Proper startup code must be inserted manually when removing the automatic reset
vector, for example by cdata[] statements (file ‘cdata.txt’).

#pragma resetVector -

The SLEEP instruction is executed when the processor exit main(). This stops program execution and the
chip enters the low power mode. Program execution may be restarted by a watchdog timer timeout or a
low state on the MCLR pin.

PIC17 also allows restart by interrupt. An extra GOTO is therefore inserted if main is allowed to
terminate (SLEEP). This ensures repeated execution of the main program. No extra GOTO is added when
a sleep() command is inserted anywhere else in the application program.

Clearing ALL RAM locations
The internal function clearRAM() will set all RAM locations to zero. The generated code uses the FSR0
register. The recommended usage is:

void main(void)
{

if (TO == 1 && PD == 1 /* power up */) {
WARM_RESET:

clearRAM(); // set all RAM to 0
}
..
if (condition)

goto WARM_RESET;
}

The code size and timing depends on the actual chip. Typically 4 instruction cycles is required for each
RAM location. At 4 MHz, each instruction cycle is 1 microsecond. The PIC17C766 device contains 902
RAM locations which mean 902*4+31 = 3639 instruction cycles or 3.6 milliseconds at 4 MHz.

6.5 Library Support
The library support includes standard math and support for user defined libraries. The library files
should be included in the beginning of the application, but after the interrupt routines.

// ..interrupt routines
#include “math16.h” // 16 bit integer math
#include “math24f.h” // 24 bit floating point
#include “math24lb.h” // 24 bit math functions

CC7A will automatically delete unused library functions. This feature can also be used to delete unused
application functions:

#pragma library 1
// library functions that are deleted if unused
#pragma library 0

CC7A C Compiler B Knudsen Data

60

Math libraries
Integer: 8, 16, 24 and 32 bit, signed and unsigned
Fixed point: 20 formats, signed and unsigned
Floating point: 16, 24 and 32 bit

All libraries are optimized to get compact code. All variables (except for the floating point flags) are
allocated on the generated stack to enable efficient RAM reuse with other local variables.

Note that fixed point requires manual worst case analysis to get correct results. This must include
calculation of accumulated error and avoiding truncation and loss of significant bits. It is often straight
forward to get correct results when using floating point. However, floating point functions requires
significantly more code. In general, floating point and fixed point are both slow to execute. Floating point
is FASTER than fixed point on multiplication and division, but slower on most other operations.

Operations not found in the libraries are handled by the built in code generator. Also, the compiler will
use inline code for operations that are most efficient handled inline.

The following command line options are available:
-we : no warning when fixed point constants are rounded
-wO : warning on operator library calls
-wi : no warning on multiple inline math integer operations
-wm : no warning on single call to math integer function

Integer libraries
The math integer libraries allow selection between different optimizations, speed or size. The libraries
contain operations for multiplication, division and division remainder.

math16.h : basic library, up to 16 bit
math24.h : basic library, up to 24 bit
math32.h : basic library, up to 32 bit

The min and max timing cycles are approximate only.

Sign: -: unsigned, S: signed

Sign Res=arg1 op arg2 Program Approx. CYCLES

A:math32.h
B:math24.h
C:math16.h Code min aver max

.B. S 24 = 16 * 16 28 40 40 42
A.. S 32 = 16 * 16 37 47 48 53
A.. - 32 = 16 * 16 25 41 41 41
.B. - 24 = 24 * 24 28 46 46 46
A.. S 32 = 32 * 16 45 62 62 65
A.. - 32 = 32 * 16 39 65 65 65
A.. S/- 32 = 32 * 32 53 77 77 77

ABC - 16 = 16 / 8 19 229 229 229
AB. - 24 = 24 / 8 20 362 362 362
A.. - 32 = 32 / 8 21 511 511 511
ABC - 16 = 16 / 16 23 248 251 296
.B. - 24 = 24 / 16 27 429 453 533
A.. - 32 = 32 / 16 28 594 637 738

CC7A C Compiler B Knudsen Data

61

.B. - 24 = 24 / 24 30 464 470 584
A.. - 32 = 32 / 32 37 744 754 968

ABC S 16 = 16 / 8 35 190 195 205
AB. S 24 = 24 / 8 38 299 305 318
A.. S 32 = 32 / 8 41 424 431 447
ABC S 16 = 16 / 16 46 257 266 320
.B. S 24 = 24 / 16 49 398 418 489
A.. S 32 = 32 / 16 52 555 587 674
.B. S 24 = 24 / 24 57 473 487 612
A.. S 32 = 32 / 32 68 753 772 1000

ABC - 8 = 16 % 8 18 221 221 221
.B. - 8 = 24 % 8 19 352 352 352
A.. - 8 = 32 % 8 20 499 499 499
ABC - 16 = 16 % 16 21 241 243 273
.B. - 16 = 24 % 16 25 412 439 500
A.. - 16 = 32 % 16 26 567 618 695
.B. - 24 = 24 % 24 28 456 461 552
A.. - 32 = 32 % 32 35 735 743 927

ABC S 8 = 16 % 8 31 186 187 192
.B. S 8 = 24 % 8 34 294 295 302
A.. S 8 = 32 % 8 37 417 419 427
ABC S 16 = 16 % 16 44 252 257 294
.B. S 16 = 24 % 16 47 393 405 451
A.. S 16 = 32 % 16 50 549 569 625
.B. S 24 = 24 % 24 57 467 476 575
A.. S 32 = 32 % 32 70 746 760 954

Fixed point libraries
math16x.h : 16 bit fixed point, 8_8, signed and unsigned
math24x.h : 24 bit fixed point 8_16, 16_8, signed and unsigned
math32x.h : 32 bit fixed point 8_24, 16_16, 24_8, signed and unsigned

The libraries can be used separately or combined.

The timing stated is measured in instruction cycles (4*clock) and includes parameter transfer, call, return
and assignment of the return value. The timing values are found by executing a large number of iterations
using selected argument values.

Sign: -: unsigned, S: signed

Sign Res=arg1 op arg2 Program Approx. CYCLES
math16x.h: Code min aver max
S 8_8 = 8_8 * 8_8 46 48 51 56
- 8_8 = 8_8 * 8_8 22 36 36 36
S 8_8 = 8_8 / 8_8 49 445 464 532
- 8_8 = 8_8 / 8_8 31 476 499 580

math24x.h: Code min aver max
S 16_8 = 16_8 * 16_8 79 82 87 94
- 16_8 = 16_8 * 16_8 49 70 70 70
S 16_8 = 16_8 / 16_8 60 718 749 897
- 16_8 = 16_8 / 16_8 38 765 797 965

CC7A C Compiler B Knudsen Data

62

S 8_16 = 8_16 * 8_16 94 97 102 109
- 8_16 = 8_16 * 8_16 64 85 85 85
S 8_16 = 8_16 / 8_16 60 886 935 1105
- 8_16 = 8_16 / 8_16 38 941 999 1197

math32x.h: Code min aver max
S 24_8 = 24_8 * 24_8 158 123 130 139
- 24_8 = 24_8 * 24_8 122 111 111 111
S 24_8 = 24_8 / 24_8 71 1054 1097 1357
- 24_8 = 24_8 / 24_8 45 1117 1159 1445

S 16_16= 16_16*16_16 143 146 153 162
- 16_16= 16_16*16_16 107 134 134 134
S 16_16= 16_16/16_16 71 1254 1322 1613
- 16_16= 16_16/16_16 45 1325 1399 1725

S 8_24 = 8_24 * 8_24 120 161 168 177
- 8_24 = 8_24 * 8_24 84 149 149 149
S 8_24 = 8_24 / 8_24 71 1454 1549 1869
- 8_24 = 8_24 / 8_24 45 1533 1639 2005

Floating point libraries

math16f.h : 16 bit floating point basic math

math24f.h : 24 bit floating point basic math
math24lb.h : 24 bit floating point library

math32f.h : 32 bit floating point basic math
math32lb.h : 32 bit floating point library

NOTE: The timing values include parameter transfer, call and return and also assignment of the return
value.

Basic 32 bit math: Approx. CYCLES
Size min aver max

a * b: multiplication 138 132 136 152
a / b: division 117 512 560 657
a + b: addition 168 38 130 205
a - b: subtraction add+5 45 137 212
int32 -> float32 78 46 69 119
float32 -> int32 84 36 77 143

Basic 24 bit math: Approx. CYCLES
Size min aver max

a * b: multiplication 89 82 86 98
a / b: division 100 309 343 400
a + b: addition 145 32 111 169
a - b: subtraction add+5 39 118 176
int24 -> float24 61 36 64 107
float24 -> int24 73 31 72 116

Basic 16 bit math: Approx. CYCLES
Size min aver max

a * b: multiplication 58 50 54 62
a / b: division 84 138 156 174

CC7A C Compiler B Knudsen Data

63

a + b: addition 118 26 86 131
a - b: subtraction add+5 33 93 138
int16 -> float16 69 39 71 108
float16 -> int16 53 26 60 98

The following operations are handled by inline code: assignment, comparing with constants,
multiplication and division by a multiple of 2 (i.e. a*0.5, b * 1024.0, c/4.0)

Floating point library functions

float24 sqrt(float24); // square root
Input range: positive number including zero
Accuracy: ME:1, relative error: 1.5*10**-5 (*)
Timing: min aver max 589 619 657 (**)
Size: 56 words
Minimum complete program example: 70 words

float32 sqrt(float32); // square root
Input range: positive number including zero
Accuracy: ME:1, relative error: 6*10**-8 (*)
Timing: min aver max 1026 1110 1183 (**)
Size: 66 words
Minimum complete program example: 83 words

float24 log(float24); // natural log function
Input range: positive number above zero
Accuracy: ME:1, relative error: < 1.5*10**-5 (*)
Timing: min aver max 1323 1872 2157 (**)
Size: 213 words + basic 24 bit math library
Minimum complete program example: 628 words

float32 log(float32); // natural log function
Input range: positive number above zero
Accuracy: ME:1, relative error: < 6*10**-8 (*)
Timing: min aver max 1840 2549 2898 (**)
Size: 267 words + basic 32 bit math library
Minimum complete program example: 791 words

float24 log10(float24); // log10 function
Input range: positive number above zero
Accuracy: ME:1-2, relative error: < 3*10**-5 (*)
Timing: min aver max 1408 1954 2253 (**)
Size: 15 words + size of log()
Minimum complete program example: 643 words

float32 log10(float32); // log10 function
Input range: positive number above zero
Accuracy: ME:1-2, relative error: < 1.2*10**-7 (*)
Timing: min aver max 1975 2679 3014 (**)
Size: 17 words + size of log()
Minimum complete program example: 808 words

float24 exp(float24); // exponential (e**x) function
Input range: -87.3365447506, +88.7228391117
Accuracy: ME:1, relative error: < 1.5*10**-5 (*)

CC7A C Compiler B Knudsen Data

64

Timing: min aver max 951 1652 1850 (**)
Size: 248 words + 82(floor24) + basic 24 bit math
Minimum complete program example: 671 words

float32 exp(float32); // exponential (e**x) function
Input range: -87.3365447506, +88.7228391117
Accuracy: ME:1, relative error: < 6*10**-8 (*)
Timing: min aver max 1637 2178 2441 (**)
Size: 320 words + 125(floor32) + basic 32 bit math
Minimum complete program example: 872 words

float24 exp10(float24); // 10**x function
Input range: -37.9297794537, +38.531839445
Accuracy: ME:1, relative error: < 1.5*10**-5 (*)
Timing: min aver max 966 1732 1866 (**)
Size: 255 words + 82(floor24) + basic 24 bit math
Minimum complete program example: 643 words

float32 exp10(float32); // 10**x function
Input range: -37.9297794537, +38.531839445
Accuracy: ME:1, relative error: < 6*10**-8 (*)
Timing: min aver max 1638 2201 2469 (**)
Size: 326 words + 125(floor32) + basic 32 bit math
Minimum complete program example: 878 words

float24 sin(float24); // sine function, input in radians
float24 cos(float24); // cosine function, input in radians

Input range: -512.0, +512.0
Accuracy: error: < 3*10**-5 (*)

The relative error can be larger when the output is near
0 (for example near sin(2*PI)), but the absolute error is
lower than the stated value.

Timing: min aver max 400 1290 1499 (**)
Size: 214 words + basic 24 bit math library
Minimum complete program example: 597 words

float32 sin(float32); // sine function, input in radians
float32 cos(float32); // cosine function, input in radians

Input range: -512.0, +512.0
* can be used over a much wider range if lower accuracy

is accepted (degrades gradually to 1 significant
decimal digit at input value 10**6)

Accuracy: error: < 1.2*10**-7 (*)
The relative error can be larger when the output is near
0 (for example near sin(2*PI)), but the absolute error is
lower than the stated value.

Timing: min aver max 551 2417 2667 (**)
Size: 352 words + basic 32 bit math library
Minimum complete program example: 847 words

(*) The accuracy of the math functions have been checked using many thousands of calculations. ME=1
means that the mantissa value can be wrong by +/- 1 (i.e. 1 bit). The relative error is then 1.5*10-5 for 24
bit floating point, and 6*10-8 for 32 bit floating point. Only a small fraction of the calculations may have
the stated error.

CC7A C Compiler B Knudsen Data

65

(**) The min and max timing stated have been found by simulating many thousands calculations.
However, the min and max limits are approximate only. All timing is measured in instruction cycles.
When using a 4 MHz oscillator, one instruction cycle is 1 microsecond.

Fast and compact inline operations
The compiler will use inline code for efficiency at some important operations:

Integer:
- converting to left and right shifts: a * 8, a / 2
- selecting high/low bytes/words: a / 256, a % 256, b % 0x10000
- replacing remainder by AND operation: a % 64, a % 0x80

Fixed Point:
- converting to left and right shifts: a * 8, a / 2
- all operations except multiplication and division are implemented inline

Floating point:
- add/sub (incr/decr) of exponent: a * 128.0, a / 2
- operations == and != : a == b, a != 0.0
- comparing with constants: a > 0, a <= 10.0
- inverting the sign bit: a = -a, b = -a

Combining inline integer math and library calls
It is possible to force the compiler to generate inline integer math code after a math library is included.
This may be useful when speed is critical or in the interrupt service routine. Functions with parameters or
local variables are not reentrant because local variables are mapped to global addresses, and therefore the
compiler will not allow calls from both main and the interrupt service routine to the same function.

uns16 a, b, c;
..
a = b * c; // inline code is generated
..

#include "math16.h"
..
a = b * c; // math library function is called
..

#pragma inlineMath 1
a = b * c; // inline code is generated

#pragma inlineMath 0
..
a = b * c; // math library function is called

Inline type modifier on math operations
It is possible to combine inline integer math and math library functions without making a special purpose
math library. This is done by stating that the selected operations are inline BEFORE the standard math
library is included. It is optimal to use inline code when there is only one operation of a certain type.

inline uns24 operator * (uns24 arg1, uns24 arg2);
#include "math24.h"

The math prototypes are found in the beginning of the standard math libraries. Just remember to remove
the operator name before adding the inline type modifier.

A warning is printed when there is ONE call to a unsigned integer math library function. The warning can
be disabled by the -wm command line option.

CC7A C Compiler B Knudsen Data

66

NOTE that the inline type modifier is currently IGNORED, except for the math operations.

Detection of multiple inline math integer operations
The compiler will print a warning when detecting more than one inline math integer operation of the
same type. Including a math library will save code, but execute slightly slower. Note that assembly code
inspection and type casts are sometimes needed to reduce the number of library functions inserted.

The warning can be disabled by the -wi command line option.

Fixed point example
#pragma chip PIC17C766
#include "math24x.h"
uns16 data;
fixed16_8 tx, av, mg, a, vx, prev, kp;

void main(void)
{

vx = 3.127;
tx += data; // automatic type cast
data = kp; // assign integer part
if (tx < 0)

tx = -tx; // make positive
av = tx/20.0;
mg = av * 1.25;
a = mg * 0.98; // 0.980469, error: 0.000478
prev = vx;
vx = a/5.0 + prev;
kp = vx * 0.036; // 0.03515626, error: 0.024
kp = vx / (1.0/0.036); // 27.7773437

}

CODE: 266 code words including library (129)

Floating point example
CODE: 596 code words including library (424). The statements are identical to the above fixed point
example to enable code size comparison.

#pragma chip PIC17C766
#include "math24f.h"
uns16 data;
float tx, av, mg, a, vx, prev, kp;

void main(void)
{

InitFpFlags(); // enable rounding as default
vx = 3.127;
tx += data; // automatic type cast
data = kp; // assign integer part
if (tx < 0)

tx = -tx; // make positive
av = tx/20.0;
mg = av * 1.25;
a = mg * 0.98;
prev = vx;

CC7A C Compiler B Knudsen Data

67

vx = a/5.0 + prev;
kp = vx * 0.036;
kp = vx / (1.0/0.036);

}

How to save code
Choices that influence code size:

1. What libraries to include (24/32 bit float or fixed point)

2. Rounding can be disabled permanently.
#define DISABLE_ROUNDING
#include "math32f.h"

3. Optimization. Note that “optimize for speed” is default. Also note that the code saving is small.
#define FP_OPTIM_SIZE // optimize for SIZE
#define FP_OPTIM_SPEED // optimize for SPEED: default

The recommended strategy is to select a main library for the demanding math operations. Different
floating and fixed point operations should only be mixed if there is a good reason for it.

Mixing different data types is possible to save code and RAM space. For example by using a small type
in an array and a larger type for the math operations.

So, first decide what math library to include. For floating point the main decision is between the 24 bit
and the 32 bit library. If you use 32 bit operations, this can be combined with 24 (and 16) bit floating
point types to save RAM.

Automatic type conversion:
integer <-> float/double
integer <-> fixed point
float <-> double
fixed point <-> float/double : requires additional functions

In general, using the smallest possible data type will save code and RAM space. This must be balanced
against the extra work to analyze the program to prevent overflow and too large accumulated errors. If
there is plenty of code space in the device, and timing is no problem, then large types can be used.
Otherwise analysis is required to get optimal selections.

It is recommended to keep the number of called library functions as low as possible. Although function
selection is done automatically by the compiler, it is possible to use type casts or even make a custom
library by copying the required functions from existing libraries. All libraries are written in C. CC7A can
print a warning for each operator function that is called (option -wO).

6.6 Inline Assembly
The CC7A compiler supports inline assembly located inside a C function. There are some restrictions
compared to general assembly. First, it is only possible to CALL other functions. Second, GOTO is
restricted to labels inside the function.

#asm
.. assembly instructions
#endasm

Features:
• many assembly formats

CC7A C Compiler B Knudsen Data

68

• equ statements can be converted to variable definitions
• macro and conditional assembly capabilities
• call C functions and access C variables
• C style comments is possible
• optional optimization
• optional automatic bank updating

Inline assembly is NOT C statements, but are executed in between the C statements. It is not
recommended to write the code like this:
if (a==b)

#asm
nop // this is not a C statement (by definition)

#endasm
a = 0; // THIS is the conditional statement!!!

Inline assembly supports DW. This can be used to insert data or special instructions. CC7A will assume
that the data inserted are instructions, but will not interpret or know the action performed. Bank selection
bits are assumed to be undefined when finishing executing DW instructions.

#asm
DW 0xFFFF ; any data or instruction (2 bytes stored)
DW 0xFFFF, 0, 0xC000 ; multiple words

#endasm

Assembly instructions are not case sensitive. However, variables and symbols require the right lower or
upper case on each letter.

clrwdt
Nop
NOP

The supported operand formats are:

k EXPR
f VAR + EXPR
f,d VAR + EXPR, D
f,b VAR + EXPR, EXPR
fs,fd VAR + EXPR, VAR + EXPR
f,k VAR + EXPR, EXPR
a LABEL or FUNCTION_NAME

EXPR := [EXPR OP EXPR | (EXPR) | -EXPR]
EXPR := a valid C constant expression, plus assembly extensions

Constant formats:

MOVLW 10 ; decimal radix is default
MOVLW 0xFF ; hexadecimal
MOVLW 0b010001 ; binary (C style)
MOVLW 'A' ; a character (C style)
MOVLW .31 ; decimal constant
MOVLW .31 + 20 - 1 ; plus and minus are allowed
MOVLW H'FF' ; hexadecimal (radix 16)
MOVLW h'0FF'
MOVLW B'011001' ; binary (radix 2)
MOVLW b'1110.1101'

CC7A C Compiler B Knudsen Data

69

MOVLW D'200' ; decimal (radix 10)
MOVLW d'222'
MOVLW MAXNUM24EXP ; defined by EQU or #define
;MOVLW 22h ; NOT allowed

Formats when loading then result into the W register:

decf ax,0 // load result into W
iorwf ax,w
iorwf ax,W

Formats when writing the result back to the RAM register:

decf ax
decf ax,1
iorwf ax,f
iorwf ax,F

Bit variables are accessed by the following formats:

bcf Carry
bsf Zero_
bcf ax,B2 ; B2 defined by EQU or #define
bcf ax,1
bcf ALUSTA,Carry ; Carry is a bit variable

Arrays, structures and variables larger than 1 byte can be accessed by using an offset.

clrf a32 ; uns32 a32; // 4 bytes
clrf a32+0
clrf a32+3
clrf tab+9 ; char tab[10];
; clrf tab-1 ; not allowed

Labels can start anywhere on the line:

goto LABEL4
LABEL1
:LABEL2
LABEL3:
LABEL4 nop
nop
goto LABEL2

Functions are called directly. A single unsigned 8 bit parameter can be transferred using the W register.

movlw 10
call f1 ; equivalent to f1(10);
rcall f1 ; equivalent to f1(10);

The ONLY way to transfer multiple parameters (and parameters different from 8 bit) is to end assembly
mode, use C syntax and restart assembly mode again.

#endasm
func(a, 10, e);
#asm

CC7A C Compiler B Knudsen Data

70

The EQU statement can be used for defining constants. Assembly blocks containing EQU's only can be
put outside the functions. Note that Equ constants can only be accessed in assembly mode. Constants
defined by #define can be used both in C and assembly mode.

#asm
B0 equ 0
B7 equ 7
MAXNUM24EXP equ 0xFF
#endasm

Equ can also be used to define variable addresses. However, the compiler does not know the difference
between an Equ address and an Equ constant until it is used by an instruction. When an Equ symbol is
used as a variable, that location is disabled for use by other variables. The symbol then changes from an
Equ symbol to a variable symbol and is made available in C mode also. There is a slight danger in this
logic. DO NOT USE a series of Equ's to define an array. If one of the locations are not read or written
directly, the compiler will not know that it is a part of an array and may use it for other purposes. Reading
and writing through FSRx and INDFx is not used to transform equ definitions. Therefore, define arrays
by using C syntax (or #pragma char).

// enable equ to variable transformation
#pragma asm2var 1
..
A1 equ 0x20
..
CLRF A1
;A1 is changed from an equ constant to a char variable

The following address operations are possible when the variable (structure/array) is set to a fixed address:

char tab[5] @ 0x110;
struct { char x; char y; } stx @ 0x120;
#asm
MOVLW tab
MOVLW &tab[1]
MOVLW LOW &tab[2]
MOVLW HIGH &tab[2]
MOVLW UPPER &tab[2]
MOVLW HIGH (&tab[2] + 2)
MOVLW HIGH (&stx.y)
MOVLW &stx.y
MOVLW &ALUSTA
#endasm

Comments types allowed in assembly mode:

NOP ; a comment
NOP // C style comments are also valid
/*
CLRWDT ;
NOP /* nested C style comments are also valid */
*/

Conditional assembly is allowed. However, the C style syntax has to be used.

#ifdef SYMBOLA
nop

CC7A C Compiler B Knudsen Data

71

#else
clrwdt
#endif

Most preprocessor statements can be used in assembly mode:
#pragma return[] = "Hello"

C style macros can contain assembly instructions, and also conditional statements. Note that the compiler
does not check the contents of a macro when it is defined.

#define UUA(a,b)\
clrwdt\
movlw a \
#if a == 10 \
nop \
#endif \
clrf b

UUA(10,ax)
UUA(9,PORTA)

Note that labels inside a macro often need to be supplied as a parameter if the macro is used more than
once. Also note that there should always be a backslash '\' after a #endasm in a macro to avoid
error messages when this macro is expanded in the C code. This applies to all preprocessor statements
inside a macro.

#define waitX(uSec, LBM) \
#asm \

LBM: \
NOP \
NOP \
DECFSZ uSec,1 \
GOTO LBM \

#endasm \

waitX(i, LL1);
waitX(i, LL2);

The compiler can optimize and perform bank updating in assembly mode. This does not happen
automatically, but has to be switched on in the source code. It is normally safe to switch on optimization
and bank updating. Instructions updating the bank register are removed before the compiler insert new
instructions. If the assembly contains critical timing, then the settings should be left off, at least in local
regions.

// default local assembly settings are b- o-
#pragma asm default b+ o+ // change default settings

#asm // using default local settings
#endasm

#asm b- o- // define local settings
#pragma asm o+ // change setting in assembly mode
#endasm // end current local settings

Interpretation:
o+ : current optimization is performed in assembly mode
o- : no optimization in assembly mode

CC7A C Compiler B Knudsen Data

72

b+ : current bank bit updating is performed in assembly mode
b- : no bank bit update in assembly mode

Note that b+ o+ means that updating is performed if the current setting in C mode is on. Updating is
NOT performed if it is switched off in the C code when assembly mode starts. The command line options
-b, -u will switch updating off globally. The corresponding source code settings are then ignored.

Direct coded instructions
The file “hexcodes.h” contains C macro's that allow direct coding of instructions.

Note that direct coded instructions are different from inline assembly seen from the compiler. The
compiler will view the instruction codes as values only and not as instructions. All high level properties
are lost. The compiler will reset optimization, bank updating, etc. after a DW statement.

Example usage:
#include "hexcodes.h"
..
// 1. In DW statements:
#asm
DW __SLEEP // Enter sleep mode
DW __MOVWF(__INDF0) // Store indirectly
DW __ANDLW(0x80) // W = W & 0x80;
DW __DECF(__FSR0,__F) // Decrement FSR0
DW __CLRF(0xFF,1) // Clear ram (banked access)
DW __BCF(__ALUSTA,__Carry) // Clear Carry bit
DW __MOVFP(__INDF0, __INDF1) // Move byte indirectly
DW __GOTO(0) // Goto byte address 0
#endasm
..
// 2. In cdata statements:
#pragma cdata[1] = __GOTO(0x3FF)

Generating single instructions using C statements
The compiler will normally generate single instructions if the C statements are simple. Remember to
inspect the generated assembly file if the application algorithm depends upon a precisely defined
instruction sequence. The following example show how to generate single instructions from C code.

nop(); // NOP
f = W; // MOVWF f
f = 0; // CLRF f
W = f - W; // SUBWF f,W
f = f - W; // SUBWF f
W = f - 1; // DECF f,W
f = f - 1; // DECF f
W = f | W; // IORWF f,W
f = f | W; // IORWF f
W = f & W; // ANDWF f,W
f = f & W; // ANDWF f
W = f ^ W; // XORWF f,W
f = f ^ W; // XORWF f
W = f + W; // ADDWF f,W
f = f + W; // ADDWF f
W = f; // MOVF f,W
W = f ^ 255; // COMF f,W
f = f ^ 255; // COMF f

CC7A C Compiler B Knudsen Data

73

W = f + 1; // INCF f,W
f = f + 1; // INCF f
W = decsz(i); // DECFSZ f,W
f = decsz(i); // DECFSZ f
W = rr(f); // RRCF f,W
f = rr(f); // RRCF f
W = rl(f); // RLCF f,W
f = rl(f); // RLCF f
W = swap(f); // SWAPF f,W
f = swap(f); // SWAPF f
W = incsz(i); // INCFSZ f,W
f = incsz(i); // INCFSZ f
b = 0; // BCF f,b
b = 1; // BSF f,b
b = !b; // BTG f,b
btsc(b); // BTFSC f,b
btss(b); // BTFSS f,b
sleep(); // SLEEP
clrwdt(); // CLRWDT
return 5; // RETLW 5
s1(); // CALL s1
goto X; // GOTO X
W = 45; // MOVLW 45
W = W | 23; // IORLW 23
W = W & 53; // ANDLW 53
W = W ^ 12; // XORLW 12
W = 33 + W; // ADDLW 33
W = 33 - W; // SUBLW 33
return; // RETURN
retint(); // RETFIE
W = addWFC(f); // ADDWFC f,W
f = addWFC(f); // ADDWFC f
W = subWFB(f); // SUBWFB f,W
f = subWFB(f); // SUBWFB f
W = rrnc(f); // RRNCF f,W
f = rrnc(f); // RRNCF f
W = rlnc(f); // RLNCF f,W
f = rlnc(f); // RLNCF f
W = decsnz(i); // DCFSNZ f,W
f = decsnz(i); // DCFSNZ f
W = incsnz(i); // INFSNZ f,W
f = incsnz(i); // INFSNZ f
f = negate(W); // NEGF f,1
a = decadj(W); // DAW a,1
multiply(f); // MULWF f
multiply(50); // MULLW 50
skipIfEQ(f); // CPFSEQ f
skipIfLT(f); // CPFSLT f
skipIfGT(f); // CPFSGT f
skipIfZero(f); // TSTFSZ f
f = refdLUInc(); // TABLRD 0,1,f
f = refdLU(); // TABLRD 0,0,f
f = refdHUInc(); // TABLRD 1,1,f
f = refdHU(); // TABLRD 1,0,f
writeLUInc(f); // TABLWT 0,1,f
writeLU(f); // TABLWT 0,0,f
writeHUInc(f); // TABLWT 1,1,f

CC7A C Compiler B Knudsen Data

74

writeHU(f); // TABLWT 1,0,f
f = refdL(); // TLRD 0,f
f = refdH(); // TLRD 1,f
writeL(f); // TLWT 0,f
writeH(f); // TLWT 1,f

6.7 Optimizing the Code
The CC7A compiler contains an advanced code generator which is designed to generate compact code.
For example when comparing a 32 bit unsigned variable with a 32 bit constant, this normally requires 12
instructions. When comparing a 32 bit variable with 0, this count is reduced to 5. The code generator
detects and takes advantage of similar situations to enable compact code.

Most of the code is generated inline, even multiplication and division. However, if many similar and
demanding math operations have to be performed, then it is recommended to include a math library.

Optimized Syntax
Testing multiple bits of 16 bit variables or greater:

uns16 x;
if (x & 0xF0)
if (!(x & 0x3C))
if ((x & 0xF00) == 0x300)
if ((x & 0x7F00) < 0x4000)

Testing single bits using the '&' operator:

if (a & 0x10) // BTFSC/BTFSS a,4
if (!(a & 0x80)) // BTFSS/BTFSC a,7
if ((a16 & 0x200) == 0) // BTFSS/BTFSC a16+1,1

Peephole optimization
Peephole optimizing is done in a separate compiler pass which removes superfluous instructions or
rewrite the code by using other instructions. This optimization can be switched off by the -u command
line option. The optimization steps are:

1) redirect goto to goto
2) remove superfluous gotos
3) replace goto by skip instructions
4) replace INCF and DECF by INCFSZ and DECFSZ
5) remove instructions that affects the zero- flag only.
6) remove superfluous updating of page bit updating
7) remove other superfluous instructions
8) remove superfluous loading of the W register
9) to be defined
10) inserts TSTFSZ, CPFSEQ

NOTE: Optimization can also be switched on or off in a local region. Please refer to the #pragma
optimize statement for more details.

6.8 The cdata Statement
The cdata statement stores 16 bit data in program memory.

NOTE 1: Constant data should normally be stored using the 'const' type modifier. However, cdata[] is
useful for storing data and instructions at fixed addresses.

CC7A C Compiler B Knudsen Data

75

NOTE 2: There is no check on validity of the inserted data or address. However, it is NOT possible to
overwrite program code and other cdata sections (except config and ID data). The data is added at the end
of the assembly and hex file in the same order as it is defined.

SYNTAX:
#pragma cdata[ADDRESS] = <VXS>, .., <VXS>
#pragma cdata[] = <VXS>, .., <VXS>
#pragma cdata.IDENTIFIER = <VXS>, .., <VXS>

ADDRESS: 16 bit word address
VXS : < VALUE | EXPRESSION | STRING>
VALUE: 0 .. 0xFFFF
EXPRESSION: C constant expr. (i.e. 0x1000+(3*1234))
STRING: "Valid C String\r\n\0\x24\x8\xe\xFF\xff\\\""

String translation: \xHH or \xH : hexadecimal number
\0 => 0 \1 => 1 \2 => 2 \3 => 3 \4 => 4
\5 => 5 \6 => 6 \7 => 7 \a => 7 \b => 8
\t => 9 \n => 10 \f => 12 \v => 11 \r => 13
\\ => the backslash character itself (0x5C)
\" => '"' (0x22)
\xHH or \xH : hexadecimal number
"\x1Conflict" is better written as "\x1" "Conflict"

Strings are stored as 8 bit ASCII characters. The least significant 8 bits of each code word are filled first.
Strings are aligned on word addresses for each <VXS>. However, alignment does not occur when writing
"abc" "def".

IDENTIFIER: any undefined identifier. It is converted to a macro identifier and set to the current cdata
word address. The purpose is to provide an automatic way to find the address of stored items.

Empty cdata statements can be used to set or read the current cdata address.
#pragma cdata[ADDRESS] // set current cdata address
#pragma cdata.IDENTIFIER // "get" current cdata address

Only cdata within the valid code space is counted when calculating the total number of code words.

Using the cdata statement
1. Defining special startup sequences:

#include "hexcodes.h"
#pragma cdata[0] = __NOP
#pragma resetVector 2 // goto main at byte address 2

2. Storing packed strings and other data

The cdata definitions should be put in a separate file and included in the beginning of the program. This
enables identifiers to be used in the program and checking to be performed.

#define CDATA_START 0x80
#pragma cdata[CDATA_START] // start of cdata block
#pragma cdata[] = 0xFFFF, 0x2000, 0x1000
#pragma cdata[] = 0x100, (10<<4) + 3456,\

10, 456, 10000

CC7A C Compiler B Knudsen Data

76

#define D8(l,h) (((l)&0xFF) + ((h)&0xFF)*256)
#define D32(x) x%0x10000, x/0x10000
#pragma cdata[] = D8(10,20), D32(10234543)

#pragma cdata.ID0 = 0x10, 200+3000
#pragma cdata.ID1 = “Hello world\0"
#pragma cdata.ID2 = “Another string\r\n" “merged”

#pragma cdata.ID_TABLE = ID0, ID1, ID2 // store addresses

#pragma cdata.CDATA_END // end of cdata block
..
#pragma origin CDATA_END // program code follow here

void write(uns16 strID);
..

write(ID1);
write(ID2);

All cdata start addresses have to be decided manually. The setup could be as follows:

.. cdata definitions

.. C functions at addresses lower than CDATA_START
// #pragma origin CDATA_START // optional
#pragma origin CDATA_END
.. C functions at addresses higher than CDATA_END

The #pragma origin CDATA_START is not required, because data overlapping is detected automatically.
However, the compiler tells how many instructions are skipped for each origin statement. The cdata
words are not counted at this printout.

Statement #pragma origin CDATA_END allows functions to be stored right after the cdata area. This
origin statement is not required if all cdata are located at the end of the code space.

Preprocessor statements can be used for checking size during compilation:

#if CDATA_END - CDATA_START > 20
#error This is too much

#endif

CC7A C Compiler B Knudsen Data

77

7 DEBUGGING
Removing compilation errors is a simple task. The real challenge is to reveal the many application bugs.
ALWAYS remember to check the assembly file if the application program does not behave as expected.
Using a compiler does not remove the need for understanding assembly code.

Debugging methods
There are several ways of debugging the program:
1. Test (parts of) the program on a simulator. This allows full control of the input signals and thus exact

repetition of program execution. It is also possible to speed up testing to inspect long term behavior
and check out rare situations. How to do this is application dependent.

2. Use a hardware emulator. An emulator allows inspection and tracing of the internal program state
during execution in the normal application environment, including digital and analog electronics.

3. Insert application specific test-code and run the program on a prototype board. Then gradually
remove the extra code from the verified program parts. The key is to take small steps and restore the
program to a working state before doing the next change. The extra test code can consist of:
1) Code that produces patterns (square waves) on the output pins. This can be checked by an

oscilloscope.
2) Repetition of output sequences.
3) Extra delays or extra code to handle special situations.

The different debugging methods have their advantages and disadvantages. It can be efficient to switch
between several methods.

Compiler bugs
Compiler bugs are hard to detect, because they are not checked out until most other tests have failed.
(Silicon bugs can be even harder). Compiler bugs can often be removed by rewriting the code slightly, or
depending on the type of bug, try:
1) #pragma optimize
2) #pragma updateBank
3) command line option: -u
4) command line option: -bu
5) command line option: -b

ALWAYS remember to report instances of compiler bugs to B Knudsen Data.

7.1 Compilation Errors
The compiler prints error messages when errors are detected. The error message is preceded by 2 lines of
source code and a marker line indicating where the compiler has located the error. The printing of source
and marker lines can be switched off by the -e command line option. The maximum number of errors
printed can also be altered. Setting the maximum to 12 lines is done by the command line option -E12.

The format of the error messages is:
Error <filename> <line number>: <error message>

Some errors are fatal, and cause the compiler to stop immediately. Otherwise the compiling process
continues, but no output files are produced.

If there is a syntax error in a defined macro, then it may be difficult to decide what the problem actually
is. This is improved by printing extra error messages which points to the macro definition, and doing this
recursively when expanding nested macro's.

NOTE: When an error is detected, the compiler deletes existing hex and assembly files produced by the
last successful compilation of the same source file.

CC7A C Compiler B Knudsen Data

78

Error and warning details
The compiler prints a short description of the error message to the output screen and to the *.occ file, but
not to the *.err file. Note that the description will not be visible when enabling the error file in MPLAB.
The *.occ file can then be opened and inspected.

-ed : do not print error details (disable)
-ew : do not print warning details (disable)
-eL : list error and warning details at the end

Some common compilation problems
• not enough variable space
Solution: Some redesign is required. The scope of local variables can be made more narrow. A better
overlapping strategy for global variables can be tried.

• the compiler is unable to generate code
Solution: Some of the C statements have to be rewritten, possibly using simpler statements.

• too much code generated
Solution: rewrite parts of the code. By checking the assembly file it may be possible to detect inefficient
code fragments. Rewriting by using the W register directly may sometimes reduce the code size.
Experience has shown that around 10% of the hex code can be removed by hand-optimizing the C code.
Optimal usage of RAM banks is important.

• too deep call level
Solution: rewrite the code. Remember that the compiler handles most cases where functions are called
once only.

7.2 MPLAB Debugging Support
The CC7A compiler can be used inside the MPLAB environment. The COD file format for debugging
purposes is supported. Two modes of source file debugging are available:

a) Using the C source file(s).

b) Using the generated assembly file as the source file. The format of the assembly file can be changed
in order to suit the debugging tool. Take a look at the assembly file options. Some suggestions:

-A1+6+10 -AmiJ : simulator I
-A1+6+6 -AmiJs : simulator II
-A6+8+12Jt : compact I
-Am6+8+12Jt : compact II

Enabling the COD-file is done by a command line option:
-CC<filename>: generate debug file using C source file(s). <filename> is optional. The asm file
option is also switched on.
-CA<filename>: generate debug file using generated assembly file as source. <filename> is optional.
The asm file option is also switched on.

Arrays:
Arrays and structures represent a slight challenge, because all variables passed in the COD file are
currently either char or bit types.

This is solved by adding new variables which appears during debugging:

CC7A C Compiler B Knudsen Data

79

char table[3]; --> table, /* offset 0 */
table_e1, /* offset 1 */
table_e2 /* offset 2 */

struct {
char a;
char b;

} st; --> st, /* offset 0 (element 'a') */
st_e1 /* offset 1 (element 'b') */

This means that the name of a structure element is not visible when inspecting variables in a debugger.

7.3 Assert Statements
Assert statements allows messages to be passed to the simulator, emulator, etc.

Syntax: #pragma assert [/] <type> <text field>

[/] : optional character

<type> : a = user defined assert
e = user defined emulator command
f = user defined printf
l = user defined log command

<text field>: undefined syntax, valid to the end of
the line. The line can be extended by a '\’
character like other preprocessor statements.

#pragma assert /e text passed to the debugger
#pragma assert e text passed to the debugger

#pragma assert ; this assert command is ignored

NOTE 1: comments in the <text field> will not be removed, but passed to the debugger.

NOTE 2: Only ASCII characters are allowed in the assert text field. However, a backslash allows some
translation:
\0 => 0, \1 => 1, \2 => 2, \3 => 3, \4 => 4
\5 => 5, \6 => 6, \7 => 7, \a => 7, \b => 8
\t => 9, \n => 10, \v => 11, \f => 12, \r => 13

USE OF MACRO'S: Macro's can be used inside assert statements with some limitations. The macro
should cover the whole text field AND the <type> identifier (or none of them). Macro's limited to a part
of the text field are not translated. Macro's can be used to switch on and off a group of assert statements
or to define similar assert statements.

#define COMMON_ASSERT a text field
#define AA /
..
#pragma assert COMMON_ASSERT
#pragma assert AA a text field

Macro AA can also disable a group of assert statements if writing:
#define AA ;

#define XX /a /* this will NOT work */
#pragma assert XX causes an error message

CC7A C Compiler B Knudsen Data

80

7.4 Debugging in Another Environment
Testing a program larger than 500-1000 instructions can be difficult. It is possible to debug parts of the
program in the Windows/MSDOS environment. Another C compiler has to be used for this purpose.
Using another environment has many advantages, like faster debugging, additional test code, use of
printf(), use of powerful debuggers, etc. The disadvantage is that some program rewriting is required.

All low level activity, like IO read and write, have to be handled different. Conditional compilation is
recommended. This also allows additional test code to be easily included.

#ifdef SIM
// simulated sequence
// or test code (printf statements, etc.)

#else
// low-level PICmicro code

#endif

The following can be compiled and debugged without modifications:

1. General purpose RAM access
2. Bit operations (overlapping variables requires care)
3. Use of FSRx and INDFx (with some precautions)
4. Use of rl(), rr(), swap(), nop() and nop2(). Carry can be used together with rl() and rr(). Direct use of

Zero_ should be avoided.
5. Use of the W register

The recommended sequence is to:
1. Write the program for the actual PICmicro device.
2. Continue working until it can be compiled successfully.
3. Debug low-level modules separately by writing small test programs (i.e. for keyboard handling,

displays, IIC-bus IO, RT-clocks).
4. Add the necessary SIM code and definitions to the code. Debug (parts of) the program in another

environment. Writing alternative code for the low-level modules is possible.
5. Return to the PICmicro environment and compile with SIM switched off and continue debugging

using the actual chip.

CC7A C Compiler B Knudsen Data

81

8 FILES PRODUCED
The compiler produces a compiler output file and a hex file that may be used for programming the
PICmicro chips directly. The hex file is produced only there are no errors during compilation. The
compiler may also produce other files by setting some command line options:
• assembly, variable, list, function outline, COD, preprocessor output and error files

8.1 Hex File
The default hex file format is INHX32. The format is changed by the -f command line option. The
INHX8M, INHX8S and INHX32 formats are:
:BBaaaaTT112233...CC
BB - number of data words of 8 bits, max 16
aaaa - hexadecimal address (byte-address)
TT - type :

00 : normal objects
01 : end-of-file (:00000001FF)

11 - 8 bits data word
CC - checksum - the sum of all bytes is zero.

The 16 bit format used by INHX16 is defined by:
:BBaaaaTT111122223333...CC
BB - number of data words of 16 bits, max 8
aaaa - hexadecimal address (of 16 bit words)
TT - type :

00 : normal objects
01 : end-of-file (:00000001FF)

1111 - 16 bits data word
CC - checksum - the sum of all bytes is zero.

8.2 Assembly Output File
The compiler produces a complete assembly file. This file can be used as input to an assembler. Text
from the source file is merged into the assembly file. This improves readability. Variable names are used
throughout. A hex format directive is put into the assembly file. This can be switched off if needed. Local
variables may have the same name. The compiler will add an extension to ensure that all variable names
are unique.

The compiler will use __config and __idlocs in the generated assembly file when #pragma config is used
in the source. The old assembly format is still available by using the command line option -cfc.

Command line option -Ma will truncate all automatic generated labels in the assembly and list files. This
option is sometimes useful when comparing assembly files generated by different compiler versions.

There are many command line options which change the assembly file produced. Please note the
difference between the -a and the -A options. The -a option is needed to produce an assembly file, while
the -A option changes the contents of the assembly and list files.

The general format is -A[scHDftumiJN+N+N].
s: symbolic arguments are replaced by numbers
c: no C source code is printed
H: hexadecimal numbers only
D: decimal numbers only
f: no object format directive is printed
t: no tabulators, normal spaces only
u: no extra info at the end of the assembly file

CC7A C Compiler B Knudsen Data

82

m: single source line only
i: no source indentation, straight left margin
J: put source after instructions to achieve a compact assembly file.
R: detailed macro expansion
N+N+N: label, mnemonic and argument spacing. Default is 8+6+10.

Note that the options are CASE sensitive.

Some examples:
Default : ; x++;

m001 INCF x
-AsDJ : m001 INCF 10 ; x++;
-Ac : m001 INCF x
-AJ6+8+11 : m001 INCF x ; x++;
-AiJ1+6+10 : m001

INCF x ;x++;
-AiJs1+6+6 : m001

INCF 0Ah ;x++;

8.3 Variable File
The variable list file contains information on the variables declared. Variables are sorted by address by
default, but this can be changed. The compiler needs the command line option -V to produce this file. The
file name is <src>.var.

The general format is -V[rnuD]. The additional letters allows the file contents to be adjusted:

r: only variables which are referenced in the code
n: sort variables by name
u: keep the variables unsorted
D: use decimal numbers

Variable file contents:
X B Address Size #AC Name

X -> L : local variable
G : global variable
P : assigned to certain address
E : extern variable
R : overlapping, directly assigned
C : const variable

B -> - : unbanked RAM
0 : bank 0
1 : bank 1
.. etc.

Address -> 0x00A : file address
0x00C.0 : bit address (file + bit number)

Size -> size in bytes (0 for bit)

#AC -> 12: number of direct accesses to the variable

Examples:
X B Address Size #AC Name
R [-] 0x01B 1 : 10: alfa
P [-] 0x01B 1 : 12: fixc

CC7A C Compiler B Knudsen Data

83

L [-] 0x01D 1 : 1: lok
L [0] 0x022.0 0 : 6: b1
G [0] 0x022.1 0 : 16: bx
G [0] 0x025 1 : 23: b

When a function is not called (unused), all its parameters and local variables are truncated to the same
location. Example:
L [-] 0x00F 1 : 16<> pm_2_

8.4 List File
The compiler can also produce a list file. The command line option is -L or -L[<col>,<lin>]. The
maximum number of columns per line <col> and lines per page <lin> can be altered. The default setting
is -L200,60. The contents of the list file can be changed by using the -A option.

8.5 Function Call Structure
The function call structure can be written to file <src>.fcs. This is useful for function restructuring in case
of call level problems. Note that two different formats are produced; the first is a list of functions, the
second is a recursive expansion of the function call structure. The command line option is -Q for both
formats.

Format sample:
F: function1 :#1

func2 : #5
delay : #2
func3 : #3

The meaning of the symbols is:
1. func2, delay and func3 are called from function1
2. #1 : function1 is called once
3. #3 : func3 is called 3 times (once from function1)

The call structure is expanded recursively. The indentation show the nesting of the function calls in the
source. The true call level is printed at the beginning of the line. The true call level is different from the
indentation level when CALL's have been replaced by GOTO's. A mark is then printed at the end of the
line in such cases. The interrupt call level is handled automatically and checked. There is a separate
expansion for the interrupt service routine.

L0 main
L1 function1
L2 func2
L2 delay
L2 func3
L1 function1 ..

Explanation of symbols used:
• L1 : stack level 1 (max 31 levels). This is the REAL stack level, compensated when CALL's have

been replaced by GOTO.
• .. : only the first call is fully expanded if more that one call to the same function occur inside the

same function body.
• [CALL->GOTO] : CALL replaced by GOTO in order to get more call levels
• [T-GOTO] : CALL+RETURN is replaced by GOTO to save a call level.
• [RECURSIVE] : recursive function call

CC7A C Compiler B Knudsen Data

84

8.6 Preprocessor Output File
The compiler will write the output from the preprocessor to a file (<src>.cpr) when using the -B
command line option. Preprocessor directives are either removed or simplified. Macro identifiers are
replaced by the macro contents. This file can be useful to check out macro expansion, for example when
the compiler produce an error message when nested macro’s are used.

The option format is -B[pims] where the additional letters allow some alternatives:

p : partial preprocessing
i : no include files
m: modify symbols
s : modify strings

Compilation will stop after preprocessing when using any of the additional letters.

CC7A C Compiler B Knudsen Data

85

9 APPLICATION NOTES

9.1 Computed Goto
Computed goto is a compact and elegant way of implementing a multi-selection. It can also be used for
storing a table of constants. However, the ‘const’ type modifier is normally the best way to store constant
data in program memory.

WARNING: Designing computed goto's of types not described in this section may fail. The generated
assembly file will then have to be studied carefully because optimization and updating of the bank
selection bits can be wrong.

The PCLATH register must be correctly updated before loading PCL. The compiler can do ALL updating
and checking automatically. Study the following code samples.

char sub0(char i)
{

skip(i); // jumps 'i' instructions forward
#pragma return[] = "Hello world"
#pragma return[] = 10 "more text" 0 1 2 3 0xFF

/* This is a safe and position-independent method
of coding return arrays or lookup constant
tables. It works for all PICmicro devices. The
compiler handles all checking and code
generation issues. It is possible to use return
arrays like above or any C statements. */

return 110;
return 0x2F;

}

char sub01(char W)
{

skip(W); // using W saves one instruction
#pragma return[] = "Simple, isn't it" 0
// skip(W) is allowed for the first 256 addresses of each page

}

Built in skip() function for computed goto
The skip() function also allow a 16 bit parameter. When using an 8 bit parameter, carry is automatically
generated (3 code words extra) if the table cross a 256 word address boundary. Options available:

 -GD : dynamic selected skip format (default)
 -GW : dynamic selected skip format, warning on long format
 -GS : always short skip format (error if boundary is crossed)
 -GL : always long skip format

When using the -GS option, CC7A will generate an error if the table cross a 256 word code address
boundary. The short format enables most compact code, but requires manually moving the table in the
source code if the error is produced.

CC7A C Compiler B Knudsen Data

86

Origin alignment
It is possible to use #pragma origin to ensure that a computed goto inside a function does not cross a 256
word address boundary. However, this may require many changes during program development. An
alternative is to use #pragma alignLsbOrigin to automatically align the least significant byte of the origin
address.

Example: A function contains a computed goto. After inspecting the generated list file, there are 16
instructions between the function start and the first destination address (offset 0) right after the ADDWF
PCL,0 instruction that perform the computed goto. The last destination address (offset 10) resides 10
instructions after the first destination. A fast a compact computed goto requires that the first and last
destination resides on the same “byte page” (i.e. (address & 0xFF00) are identical for the two addresses).
This is achieved with the statement:

#pragma alignLsbOrigin -16 to 255 – 10 – 16

The alignment pragma statement is not critical. The compiler will generate an error (option -GS) or a
warning (-GW) if the computed goto cross a boundary because of a wrong alignment. An easier approach
is to align the LSB to a certain value (as long as program size is not critical).

#pragma alignLsbOrigin 0 // align on LSB = 0
#pragma alignLsbOrigin 0 to 190 // [-255 .. 255]
#pragma alignLsbOrigin -100 to 10

Computed goto regions
The compiler enters a goto region when skip() is detected. In this region optimization is slightly changed,
and some address checks are made. The goto region normally ends where the function ends.

A goto region can also be started by a pragma statement:
#pragma computedGoto 1 // start c-goto region
// useful if PCL is written directly

A goto region can also be stopped by a pragma statement:
#pragma computedGoto 0 // end of c-goto region
/* recommended if the function contains code

below the goto region, for instance when the
table consists of an array of goto
statements (examples follow later). */

Computed Goto Regions affects:
1. Optimization
2. Register bank bit updating
3. 256 word boundary checks

Examples

void sub3(char s)
{

/* the next statements could also be written as
a switch statement, but this solution is
fastest and most compact. */

if (s >= 3)
goto Default;

CC7A C Compiler B Knudsen Data

87

skip(s);
goto Case0;
goto Case1;
goto LastCase;

#pragma computedGoto 0 // end of c-goto region

Case0:
/* user statements */
return;

Case1:
LastCase:

/* user statements */
return;

Default:
/* user statements */
return;

}

void sub4(char s)
{

/* this solution can be used if very fast
execution is important and a fixed number of
instructions (2/4/8/..) is executed at each
selection. Please note that extra statements
have to be inserted to fill up empty space
between each case. */

if (s >= 10)
goto END;

s = rlnc(s); /* multiply by 2 */
s = rlnc(s); /* multiply by 2 */
skip(s);

// execute 4 instructions at each selection
Case0: nop(); nop(); nop(); return;
Case1: nop(); nop(); nop(); return;
Case2: nop(); nop(); nop(); return;
Case3: nop(); nop(); nop(); return;
Case4: nop(); nop(); nop(); return;
Case5: nop(); nop(); nop(); goto END;
Case6: nop(); nop(); nop(); goto END;
Case7: nop(); nop(); nop(); goto END;
Case8: nop(); nop(); nop(); goto END;
Case9: nop(); nop(); nop(); goto END;
#pragma computedGoto 0 /* end of region */
END:
; // More statements

}

9.2 The switch statement

char select(char W)
{

CC7A C Compiler B Knudsen Data

88

switch(W) {
case 1: /* XORLW 1 */

/* .. */
break;

case 2: /* XORLW 3 */
break;

case 3: /* XORLW 1 */
case 4: /* XORLW 7 */

return 4;
case 5: /* XORLW 1 */

return 5;
}
return 0; /* default */

}

The compiler performs a sequence of XORLW <const>. These constants are NOT the same as the
constants written in the C code. However, the produced code is correct! If more compact code is required,
then consider rewriting the switch statement as a computed goto. This is very efficient if the cases are
close to each other (i.e. 2, 3, 4, 5, ..).

CC7A - APPENDIX B Knudsen Data

89

APPENDIX

A1 Predefined Register Names
All register names, including the predefined ones, are found in the header files. The predefined register
names are:

char W, WREG;
char INDF0, FSR0;
char PCL, PCLATH;
char ALUSTA, T0STA, CPUSTA, INTSTA;
char INDF1, FSR1;
char TMR0L, TMR0H;
char TBLPTR, TBLPTRL, TBLPTRH;
char BSR, BSRL, BSRH;
bit Carry, DC, Zero_, Overflow;

A2 Assembly Instructions
Assembly: ALUSTA: Operation:
ADDLW k C,DC,Z,OV W = k + W; Add literal and W
ADDWF f,d C,DC,Z,OV d = f + W; Add W and f
ADDWFC f,d C,DC,Z,OV d = f + W + C; Add with Carry
ANDLW k Z W = W & k; AND literal and W
ANDWF f,d Z d = f & W; AND W and f
BCF f,b - f.b = 0; Bit clear f
BSF f,b - f.b = 1; Bit set f
BTG f,b - f.b = !f.b; Bit toggle
BTFSC f,b - Bit test f, skip if clear
BTFSS f,b - Bit test f, skip if set
CALL k - Call subroutine
CLRF f,d - f = 0; Clear f (and WREG)
CLRWDT - TO,PD WDT = 0; Clear watchdog timer
COMF f,d Z,N d = f ^ 255; Complement f
CPFSEQ f - Skip if f=W
CPFSGT f - Skip if f>W
CPFSLT f - Skip if f<W
DAW f,d C Decimal adjust W, store in f (and WREG)
DCFSNZ f,d - Decrement f, skip if not zero
DECFSZ f,d - Decrement f, skip if zero
DECF f,d C,DC,Z,OV d = f - 1; Decrement f
GOTO k - Go to address
INCF f,d C,DC,Z,OV d = f + 1; Increment f
INCFSZ f,d - Increment f, skip if zero
INFSNZ f,d - Increment f, skip if not zero
IORLW k Z W = W | k; Inclusive OR literal
IORWF f,d Z d = f | W; Inclusive OR W and f
MOVFP f,p - Move f to p
MOVPF p,f Z Move p to f
MOVLB k - BSR (bit 0-3) = k
MOVLR k - BSR (bit 4-7) = k
MOVLW k - W = k; Move literal to W
MOVWF f - f = W; Move W to f
MULLW k - PRODH,PRODL = W * k; Multiply
MULWF f - PRODH,PRODL = W * f; Multiply
NEGF f,d C,DC,Z,OV Negate W, store in f (and WREG)

CC7A - APPENDIX B Knudsen Data

90

NOP - - No operation
RETLW k - Return, put literal in W
RETURN - - Return from subroutine
RETFIE - - Return from interrupt
RLCF f,d C Rotate left f through carry bit
RLNCF f,d Rotate left f
RRCF f,d C Rotate right f through carry bit
RRNCF f,d Rotate right f
SETF f,d - f = 0xFF; Store in f (and WREG)
SLEEP - TO,PD Go into standby mode, WDT = 0
SUBLW k C,DC,Z,OV W = k - W; Subtract W from literal
SUBWF f,d C,DC,Z,OV d = f - W; Subtract W from f
SUBFWB f,d C,DC,Z,OV d = W – f - ~C; Subtract with borrow
SUBWFB f,d C,DC,Z,OV d = f – W - ~C; Subtract with borrow
SWAPF f,d - Swap halves f
TABLRD t,i,f - Table read update
TABLWT t,i,f - Table write update
TLRD t,f - Table read
TLWT t,f - Table write
TSTFSZ f,a - Skip if f=0
XORLW k Z W = W ^ k; Exclusive OR literal
XORWF f,d Z d = f ^ W; Exclusive OR W and f

Notes:
d = 1 : destination f
d = 0 : destination W
f : file register
Z : Zero bit : Z = 1 if result is 0
C : Carry bit

C = 1 : indicates carry on addition
C = 0 : indicates borrow on subtraction

DC : Digit Carry bit
DC = 1 : indicates carry on addition
DC = 0 : indicates borrow on subtraction

TO : Timeout bit
PD : Power down bit

Instruction execution time
Most instructions execute in 4 clock cycles. The exceptions are instructions that modify the program
counter. These execute in 8 clock cycles:
• GOTO and CALL
• skip instructions when next instruction is skipped
• instructions that modify the program counter, i.e: ADDWF PCL

	1 INTRODUCTION
	1.1 Supported devices
	1.2 Installation and System Requirements
	Support for long file names
	User interface

	1.3 MPLAB Support
	1.4 Summary of Delivered Files
	1.5 Short Program Example
	1.6 Defining the PICmicro Device
	1.7 What to do next

	2 VARIABLES
	2.1 RAM allocation
	2.2 Defining Variables
	Integer variables
	Floating point
	IEEE754 interoperability
	Fixed point variables
	Assigning variables to RAM addresses
	Supported type modifiers
	Local variables
	Temporary variables
	Arrays, structures and unions
	Bitfields
	Typedef

	2.3 Using RAM Banks
	The bank type modifier
	RAM bank selection
	Local user update regions

	2.4 Pointers
	Pointer models

	2.5 Const Data Support
	Data of size 16 bit or more
	Merging data
	Examples

	3 SYNTAX
	3.1 Statements
	if statement
	while statement
	for statement
	do statement
	switch statement
	break statement
	continue statement
	return statement
	goto statement

	3.2 Assignment and Conditions
	Special syntax examples
	Conditions
	Bit variables
	Multiplication, division and modulo
	Precedence of C operators
	Mixed variable sizes are allowed

	3.3 Constants
	Constant expressions
	Enumeration

	3.4 Functions
	Function return values
	Parameters in function calls
	Internal functions

	3.5 Type Cast
	3.6 Accessing Parts of a Variable
	3.7 C Extensions
	3.8 Predefined Symbols
	Extensions to the standard C keywords
	Standard C keywords used
	The sizeof operator
	Function offsetof(struct_type, struct_member)
	Automatically defined macros and symbols
	Macro's __FILE__ and __LINE__
	Macro's __DATE__ and __TIME__

	3.9 Upward Compatibility

	4 PREPROCESSOR DIRECTIVES
	
	#define
	Macro concatenation
	Macro stringification
	#include
	#undef
	#if
	#ifdef
	#ifndef
	#elif
	#else
	#endif
	#error
	#warning
	#message
	#pragma alignLsbOrigin <a> [to]
	#pragma asm2var 1
	#pragma assert [/] <type> <text field>
	#pragma assume *<pointer> in rambank <n>
	#pragma bit <name> @ <N.B or variable[.B]>
	#pragma cdata[ADDRESS] = <VXS>, .., <VXS>
	#pragma char <name> @ <constant or variable>
	#pragma chip [=] <device>
	#pragma computedGoto [=] <0,1>
	#pragma config [<offset>] = <expression>
	#pragma inlineMath <0,1>
	#pragma insertConst
	#pragma interruptSaveCheck <n,w,e>
	#pragma library <0/1>
	#pragma mainStack <minVarSize> @ <lowestStartAddr>
	#pragma minorStack <maxVarSize> @ <lowestStartAddr>
	#pragma optimize [=] [N:] <0,1>
	#pragma origin [=] <expression>
	#pragma rambank [=] <-,0,1,2,..,15>
	#pragma rambase [=] <n>
	#pragma resetVector <n>
	#pragma return[<n>] = <strings or constants>
	#pragma sharedAllocation
	#pragma stackLevels <n>
	#pragma unlockISR
	#pragma updateBank [entry | exit | default] [=] <0,1>
	#pragma versionFile [<file>]

	4.2 PICmicro Configuration

	5 COMMAND LINE OPTIONS
	5.1 Options in a file
	5.2 Automatic incrementing version number in a file
	5.3 Environment Variables

	6 PROGRAM CODE
	6.1 Program Code Pages
	Another way of locating functions
	The page type modifier
	Page selection bits

	6.2 Subroutine Call Level Checking
	Stack level checking when using interrupt
	Recursive functions

	6.3 Interrupts
	6.4 Startup and Termination Code
	Clearing ALL RAM locations

	6.5 Library Support
	Math libraries
	Integer libraries
	Fixed point libraries
	Floating point libraries
	Floating point library functions
	Fast and compact inline operations
	Fixed point example
	Floating point example
	How to save code

	6.6 Inline Assembly
	Direct coded instructions
	Generating single instructions using C statements

	6.7 Optimizing the Code
	Optimized Syntax
	Peephole optimization

	6.8 The cdata Statement
	Using the cdata statement

	7 DEBUGGING
	7.1 Compilation Errors
	Error and warning details
	Some common compilation problems

	7.2 MPLAB Debugging Support
	7.3 Assert Statements
	7.4 Debugging in Another Environment

	8 FILES PRODUCED
	8.1 Hex File
	8.2 Assembly Output File
	8.3 Variable File
	8.4 List File
	8.5 Function Call Structure
	8.6 Preprocessor Output File

	9 APPLICATION NOTES
	9.1 Computed Goto
	Built in skip() function for computed goto
	Origin alignment
	Computed goto regions
	Examples

	9.2 The switch statement

	APPENDIX
	A1 Predefined Register Names
	A2 Assembly Instructions
	Instruction execution time

